一只飞鱼的博客

计算机三维视觉,SLAM,深度学习

排序:
默认
按更新时间
按访问量

总结(/Review): 回环检测中的位置识别(Place Recognition)

更新于2018.8 开始之前 回环检测的关键在于重新识别到同一个地方,这块领域被称为位置识别(Place Recognition)。 此文主要总结大视角变化和场景变化中的位置识别。 位置识别中的一些概念 位置识别模块分为三个部分:图像处理部分;已知地图表达部分;置信决策部分(判断该图像是...

2018-08-06 22:21:23

阅读数:41

评论数:0

双目标定(二)单目标定基本原理

主体思路,先处理纯二维平面的畸变问题(此处略过),矫正图片后,再来求解相机内参外餐 1. 标定板平面到像平面的单应矩阵H ,则对于每个棋盘格,可以得到一个标定板平面到当前图像平面的单应矩阵Hi,实际上这个单应矩阵Hi汇总了标定板平面到相机成像平面的旋转平移以及相机内参信息。 现在,我们已知每...

2018-05-31 18:42:52

阅读数:180

评论数:0

Git使用(5) 改变权限,移动,删除;.git版本存储瘦身

git status时忽略因为权限改变引起的文件改变: git config core.filemode false

2018-05-22 17:35:21

阅读数:60

评论数:0

双目标定(三)标定流程(含矫正)

1.采集 1.1标定板的制作。 大小:应当使得标定板在图像中占比尽可能大一些。占图像长度比例应当超过1/3;如果实在无法保证标定板占图像比例比较大如果占比比较小,则需要尽可能多采集一些图像。 平:标定板应当尽可能使理想平面。如果要求不是非常严格(比如重投影误差0.3即可),也可以用纸板(...

2018-05-16 13:07:42

阅读数:394

评论数:0

论文阅读-位姿估计-SE3-Nets Learning Rigid Body Motion using Deep Neural Networks

SE3-Nets Learning Rigid Body Motion using Deep Neural Networks(1) - 输入:三维点;系统输入(如推力); - 输出:三维点 该论文只针对三维点云输入(RGBD等),来求解每帧中目标物体的刚体变换关系(SE(3), pose)。...

2018-04-19 17:34:33

阅读数:124

评论数:0

论文笔记-Sparsity Invariant CNNs

Sparsity Invariant CNNs 这篇文章提出了一个稀疏卷积网络框架,从稀疏的深度图中补全深度(depth completion)。这个稀疏卷积网络框架能够处理不同稀疏程度的深度数据。此外本文由kitti数据生成了一个对应的rgbd数据来用于训练。 此处的稀疏卷积网络指的是应对稀...

2018-04-19 11:47:20

阅读数:120

评论数:2

论文阅读: GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose(CVPR2018)

CVPR2018_GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 提出了一个联合估计深度、光流和pose的网络。 ,这是在left-right consistency的无监督估计、sfmlea...

2018-04-17 20:33:47

阅读数:297

评论数:0

论文笔记-Loop Closure Detection for Visual SLAM Systems Using Deep Neural Networks

Xiang Gao, Tao Zhang,Loop Closure Detection for Visual SLAM Systems Using Deep Neural Networks, 2015 Xiang Gao, Tao Zhang,Unsupervised learning to d...

2018-04-16 22:35:00

阅读数:176

评论数:0

双目标定(一)单目标定与矫正的基本介绍

1.单目相机标定 首先,任何标定都是用基于小孔模型的数学模型去近似相机模型,我们需要用fx = f/dx, fy = f/dy,图像坐标系中的光心原点坐标(和可能的缩放因子ks)这5个相机内参数,切向畸变参数和径向畸变参数,共5+N个参数来“近似”整个相机投影模型。这是我们需要求解的量。 1....

2018-04-10 13:21:48

阅读数:262

评论数:0

互信息

1. 相关性的描述问题 独立性说明两者之间无关系,相关性可以说明两者之间有关系,但这两者之间关系强弱如何度量?我们可以有线性相关系数(皮尔逊积矩相关系数)、卡方检验(此处不谈)和互信息这几个指标来进行量化。 使用线性相关系数的前提自变量与因变量是线性关系,取值范围为[-1,1],负数表示负相关...

2018-04-03 13:06:57

阅读数:54

评论数:0

三维物体追踪笔记(1)-基于边缘的三维物体追踪——理论、公式推导与实现

1. 基于边缘检测的三维跟踪建模 三维物体追踪是已知图像中某个物体在已知一系列空间三维点位置(或者是一个3D 模型面片集)的信息下,将这些点通过一个恰到好处的位姿(R,t)进行转换后投影到图像上。问题的求解目标是这个位姿(R,t),难点是并不知道这些三维点对应图像上的哪些像素点。 假如已知这个...

2018-03-16 15:55:55

阅读数:167

评论数:0

tensorflow学习笔记(2)-常用运算函数

tf.slice(input_,begin,size) slice常翻译成切片,这个翻译不好。用”片段”,“截断”更准确,因为这儿是“部分”的意思。我们知道,在python中slice表示取list,tuple的一部分。比如可以将list当做一个循环队列,arr[1:9:-1]是取arr 下标2...

2018-03-15 12:23:25

阅读数:100

评论数:0

vim 易忘命令速查

vim迅步如飞: w移动到下一个单词词首,W移动到下一个空格之后 b移动到上一个单词词首 vim 删除: 单个字符: x 删除光标所在处字符 X 删除光标所在前字符 删除word dw 删除到下一个单词开头...

2018-03-15 12:09:54

阅读数:53

评论数:0

SLAM笔记(九)再谈李代数

内容接SLAM笔记(一)SLAM中的数学概览 李群: 定义:实数空间上的连续群(对乘法、逆都是连续的,解析的) 举例:如GL(n),SO(n),SE(n) 李代数(Lie algebra): 定义:由一个集合,一个数域,和一个二元运算[]组成;满足封闭、双线性、自反性、雅克比等价。 如...

2018-03-14 15:49:48

阅读数:173

评论数:0

SLAM笔记(八)-再谈四元数

在二维空间中,我们用复数表示某点坐标,此时可以用加法表达点的移动,用乘法(乘以一个复数)表示点绕原点的旋转。 在三维空间中,我们无法无法用三维的“超级复合数”来表示点的移动和旋转。这也是四元数发明者汉姆尔顿(爱尔兰数学家)曾苦恼的地方。后来他想:为什么要坚持3位数表达,不用四位数来表达三维空间的...

2018-03-14 12:34:48

阅读数:180

评论数:0

论文笔记-损失函数之SSIM

损失函数用来鼓励和抑制某些行为。 在深度学习中,如果是分类问题,则可以用交叉熵,softmax,SVM等损失函数。如果是回归问题,则代价函数普遍采用L2,或者L1。 由于L2(即用真值和预测值的欧氏距离)是一个非凸形式且可导。。但L2的使用前提是噪声高斯分布的。它抑制大的误差,但对小的误差却很...

2018-01-10 21:43:15

阅读数:2237

评论数:4

论文笔记-深度估计(7)-CNN-SLAM Real-time dense monocular SLAM with learned depth prediction

CVPR2017_CNN-SLAM Real-time dense monocular SLAM with learned depth prediction关键词:基于CNN的单张图深度估计,语义SLAM,半稠密的直接法SLAM作者提出了一个利用CNN结合SLAM的应用,其SLAM过程如上图,具体...

2018-01-05 22:11:40

阅读数:1305

评论数:0

tensorflow学习笔记(1)-tensoflow的设计机制

tensorflow将整个计算表征为一个图(graph),t图的节点(node)是Operation(常常简称为ops),节点之间的边(edge)是张量(tensor),不能理解反了。 用图的方式能很容易根据边的连接关系,发现可以并行执行的节点(运算),也更容易分布式部署。此外它专门的编译器可以...

2018-01-03 19:42:54

阅读数:379

评论数:0

论文笔记-深度估计(6)-Unsupervised Learning of Depth and Ego-Motion from Video

CVPR2017_Unsupervised Learning of Depth and Ego-Motion from Video 这是一篇从一段视频中恢复场景深度和相机pose的论文。 他可能是第一篇用深度学习的方法从一段视频中恢复camera的pose的方法,它用两个网络(严格意义上是3个...

2018-01-03 00:47:02

阅读数:1282

评论数:0

论文笔记-深度估计(5)Unsupervised Monocular Depth Estimation with Left-Right Consistency

ECCV2016_Unsupervised Monocular Depth Estimation with Left-Right Consistency 本文采用无监督学习(没有ground truth)的方法来估计深度,基本思路是匹配好左右视图的像素,得到disparity map。根据得到的...

2018-01-01 15:38:58

阅读数:1444

评论数:6

提示
确定要删除当前文章?
取消 删除
关闭
关闭