300.最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums)<=1:
return len(nums)
dp=[1]*len(nums)
#注意dp是一维而不是二维数组
value=1
for i in range(1,len(nums)):
for j in range(0,i):
if nums[i]>nums[j]:
dp[i]=max(dp[i],dp[j]+1)
value=max(value,dp[i])
return value
674. 最长连续递增序列
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
0 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
if len(nums)<=1:
return len(nums)
dp=[1]*len(nums)
result=1
for i in range(1,len(nums)):
if nums[i]>nums[i-1]:
#注意判断条件
dp[i]=dp[i-1]+1
result=max(dp)
return result
718. 最长重复子数组(连续子序列)
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
示例:
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3, 2, 1] 。
提示:
1 <= len(A), len(B) <= 1000
0 <= A[i], B[i] < 100
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
dp=[[0]*(len(nums2)) for _ in range((len(nums1)))]
result=0
for i in range(len(nums1)):
if nums1[i]==nums2[0]:
dp[i][0]=1
result=max(result,dp[i][0])
for j in range(len(nums2)):
if nums2[j]==nums1[0]:
dp[0][j]=1
result=max(result,dp[0][j])
#注意由于之后的循环不包括这两种情况,所以要及时把结果放到result中
for i in range(1,len(nums1)):
for j in range(1,len(nums2)):
if nums1[i]==nums2[j]:
dp[i][j]=dp[i-1][j-1]+1
#特别注意ij要和前面定义二维数组相对应
result=max(result,dp[i][j])
return result