- 原文题目:Policy Gradient Methods for Reinforcement Learning with Function Approximation
- 作者:Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
- 发表时间:2000年
- 主要内容:强化学习中使用函数近似的策略梯度方法。得出了策略梯度的表达式,进一步推导了使用函数近似情况下的计算问题,最后证明这样的方法可以收敛到局部最优。
DRL经典文献阅读(一):策略梯度理论(Policy Gradient, PG)
于 2022-10-17 19:15:32 首次发布
本文深入探讨了策略梯度方法在强化学习中的应用,详细介绍了策略梯度定理及其在函数近似条件下的理论。通过分析策略梯度的表达式和收敛性,阐述了该方法如何用于解决复杂环境的决策问题,并讨论了在实际算法中的优势与实现技巧,如基线函数的选择,以及在函数近似条件下的收敛性分析。
订阅专栏 解锁全文
1269

被折叠的 条评论
为什么被折叠?



