DRL经典文献阅读(一):策略梯度理论(Policy Gradient, PG)

本文深入探讨了策略梯度方法在强化学习中的应用,详细介绍了策略梯度定理及其在函数近似条件下的理论。通过分析策略梯度的表达式和收敛性,阐述了该方法如何用于解决复杂环境的决策问题,并讨论了在实际算法中的优势与实现技巧,如基线函数的选择,以及在函数近似条件下的收敛性分析。
摘要由CSDN通过智能技术生成
  • 原文题目:Policy Gradient Methods for Reinforcement Learning with Function Approximation
  • 作者:Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
  • 发表时间:2000年
  • 主要内容:强化学习中使用函数近似的策略梯度方法。得出了策略梯度的表达式,进一步推导了使用函数近似情况下的计算问题,最后证明这样的方法可以收敛到局部最优。

深度强化学习(Deep Reinforcement Learning, DRL)已成为自动驾驶领域的热门技术之,其在车辆控制方面的应用也得到了广泛研究。车辆控制是自动驾驶中最核心的技术之,它不仅需要对车辆的速度、加速度、转向等基本参数进行控制,还需要考虑到车辆的周围环境信息,如道路状况、交通信号灯、前方车辆行驶信息等,以保证车辆在复杂的交通环境中行驶安全。 在DRL技术中,车辆控制问题可以被视为强化学习问题。强化学习通过学习最优策略来使智能体(如自动驾驶车辆)在环境中实现目标,其中智能体通过与环境交互获得奖励信号,以指导其行为的优化。在车辆控制中,DRL技术可以通过学习最优的控制策略来驱动车辆行驶,同时考虑到周围环境信息,如交通信号灯、前车行驶信息等,以实现自动驾驶的目标。 近年来,DRL在自动驾驶车辆控制方面的应用已经得到了广泛研究。些研究使用DRL技术来训练控制策略,如深度Q网络(Deep Q-Network, DQN)、策略梯度Policy Gradient, PG)等。例如,研究者已经使用DQN来训练车辆在高速公路上行驶,并成功实现了自动驾驶的目标。PG方法也被用于训练车辆在城市道路上行驶,并可以考虑到交通信号灯和前车行驶信息等。 除了DQN和PG方法外,还有些新的DRL方法被应用于自动驾驶车辆控制领域,如双重DQN(Double DQN)、深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)等。这些方法可以进步提高自动驾驶的效果和性能。 总之,DRL技术在自动驾驶车辆控制中的应用已经取得了许多进展,未来还有很大的研究空间和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二向箔不会思考

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值