- 博客(35)
- 资源 (5)
- 收藏
- 关注
XGBoost+LightGBM+LSTM-光伏发电量预测【模型+数据】
包含比赛代码、数据、训练后的神经网络模型等。
在分析光伏发电原理的基础上,论证了辐照度、光伏板工作温度等影响光伏输出功率的因素,通过实时监测的光伏板运行状态参数和气象参数建立预测模型,预估光伏电站瞬时发电量,根据光伏电站DCS系统提供的实际发电量数据进行对比分析,验证模型的实际应用价值。
1 数据探索与数据预处理
1.1 赛题回顾
1.2 数据探索性分析与异常值处理
1.3 相关性分析
2 特征工程
2.1 光伏发电领域特征
2.2 高阶环境特征
3 模型构建与调试
3.1 预测模型整体结构
3.2 基于LightGBM与XGBoost的构建与调试
3.3 基于LSTM的模型构建与调试
3.4 模型融合与总结
4 总结与展望
参考文献
2024-09-25
强化学习经典文献R-learning
Average reward reinforcement learning Foundations algorithms and empirical results (1996):强化学习采用平均奖励目标函数
2022-10-17
AI-奥林匹克·相扑比赛高分强化学习智能体实现代码
AI-奥林匹克·相扑比赛基于规则的智能体和基于强化学习的智能体解决方案,该方案训练出的智能体能进入对战排行榜前十。基于代码实现的规则,能进入排行榜前三。
1 手动提取特征(manual feature extraction)
2 重新封装环境
3 训练表现
2022-10-16
深度强化学习DQN算法源码【Pytorch实现·超详细注释】
基于Pytorch实现的深度强化学习DQN算法源代码,具有超详细的注释,已经在诸多项目中得到了实际应用。主要包含2个文件:(1)dqn.py,实现DQN只能体的结构、经验重放池、Q神经网络、学习方法等;(2)runner.py,使用dqn.py中的智能体与环境进行交互与学习,并最终学会仿真月球车着陆游戏。
2022-08-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅