二向箔不会思考
码龄9年
关注
提问 私信
  • 博客:179,834
    社区:8,361
    动态:1,263
    学院:2,729
    视频:32,701
    224,888
    总访问量
  • 33
    原创
  • 66,150
    排名
  • 6,140
    粉丝
  • 18
    铁粉

个人简介:本AI正在冥想中~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2015-10-28
博客简介:

二向箔

查看详细资料
  • 原力等级
    当前等级
    5
    当前总分
    1,242
    当月
    7
个人成就
  • 获得277次点赞
  • 内容获得150次评论
  • 获得1,534次收藏
  • 代码片获得998次分享
创作历程
  • 4篇
    2024年
  • 1篇
    2023年
  • 26篇
    2022年
  • 1篇
    2020年
  • 1篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • 深度强化学习极简入门与Pytorch实战
    付费
    19篇
  • 雷达与通信信号处理
    2篇
  • 基于Python的信号处理
    4篇
  • 多智能体强化学习Paper&Coding
    5篇
  • 机器学习比赛
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理pytorchtransformer图像处理nlp数据分析
TA的社区
  • 枫老师的课程社区_NO_1
    2 成员 49 内容
    创建者
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于天线的增益

第二天线如果和设备用同样的思路去理解即输入是天线输入口,输出即天线辐射到空间的能量总和,对于无源天线这个比值一定是小于1,或者是负数dB,即损耗,或者叫天线的效率,不同说法描述同样的事情;第四为啥天线明明是损耗了能量,计算时却变成了加天线增益,因为我们关注的时在天线以外某点空间上的能接收到的能量,在计算空间损耗时是按照点源天线的损耗计算的(因为这么算容易计算和理解),所以先把原有天线等效为对应点源天线,当然输出能量也得换算,注意这里是等效计算,并不是真的能量增大了。
原创
发布博客 2024.10.31 ·
516 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

XGBoost+LightGBM+LSTM-光伏发电量预测【模型+数据】

发布资源 2024.09.25 ·
zip

RL进阶(一):变分推断、生成模型、SAC

形式上,隐变量既不是直接获取的证据变量,也不是所关心的目标变量,但是有助于建立证据变量和目标变量之间的联系。比如上面的图片中有三堆相对集中的数据,实际上数据并不包含颜色信息,但是一看这张图片我们可能就会使用一个多元正态分布去拟合这些数据。这里面的隐变量实际上是一个离散的类别变量。这里体现了一种强大的计算方式,即用简单分布分乘积的积分表示以一个非常复杂的积分。,那么什么样的分布最可能产生这样的数据?的数据,我们可能会使用像多元高斯这样的概率模型去拟合这些数据。出现的概率,比如强化学习中的策略函数。
原创
发布博客 2024.09.25 ·
83 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

相控阵天线阵元波程差相位差计算

https://blog.csdn.net/Blaze_Xu/article/details/135445530
转载
发布博客 2024.07.08 ·
144 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

循环神经网络RNN、RNNCell、GRUCell

【代码】循环神经网络RNN、RNNCell、GRUCell。
原创
发布博客 2024.02.19 ·
458 阅读 ·
4 点赞 ·
1 评论 ·
0 收藏

IEEE Signal Processing Letters投稿记录

4个审稿人,3个同意接收,1个拒绝。审稿意见中规中矩,没有太刁钻的问题,有两个审稿人提的意见比较中肯,但都是讨论,无需修改论文。2023.03.18 AQ(ACCEPTED WITH MANDATORY CHANGES)小修,给了两周时间。:总结起来,3个月拿到AQ,修改10天,AE在14天后录用,总用时将近4个月。2023.03.24 Outstanding Revision Reminder催我提交修改稿。2022.12.20 Prescreen编辑部预审。2023.04.03 提交返修稿。
原创
发布博客 2023.04.25 ·
2514 阅读 ·
2 点赞 ·
9 评论 ·
2 收藏

MARL算法系列(1):IQL【原理+代码实现】

相互独立的两个DQN智能体,竞争任务下学会了相互竞争的策略,合作任务下学会了合作策略。
原创
发布博客 2022.12.27 ·
2869 阅读 ·
2 点赞 ·
1 评论 ·
18 收藏

多智能体强化学习环境【星际争霸II】SMAC环境配置

多智能体强化学习这个领域中,很多Paper都使用的一个环境是——星际争多智能体挑战(StarCraft Multi-Agent Challenge, SMAC)。最近也配置了这个环境,把中间一些步骤记录下来。
原创
发布博客 2022.12.26 ·
4594 阅读 ·
4 点赞 ·
1 评论 ·
18 收藏

脉冲雷达系统仿真Matlab代码

发布资源 2022.12.24 ·
zip

DRL经典文献阅读(二):确定性策略梯度(DPG+DDPG)【附代码】

在强化学习这一领域中,智能体的策略可以分为两类,即随机策略πθ(a∣s)=P[a∣s;θ],表示在状态sss下根据参数θ\thetaθ随机的概率选择动作aaa;确定性动作a=μθ(s)a=μθ​(s),该策略在状态sss下根据参数θ\thetaθ确定性地给出唯一动作aaa。
原创
发布博客 2022.11.15 ·
676 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

脉冲雷达系统设计与Matlab仿真【附仿真代码】

本文主题:雷达分类、作用距离、分辨率、雷达方程、脉冲积累、噪声系数实验:设计一个相对完整的脉冲雷达系统,实现对目标的搜索和探测,并用matlab进行仿真
原创
发布博客 2022.10.24 ·
11111 阅读 ·
56 点赞 ·
81 评论 ·
171 收藏

接收灵敏度和等效噪声带宽(ENBW)

接收机通常包含窄带硬件滤波器以及数字信号处理(DSP)中实现的窄带低通滤波器。等效噪声带宽(ENBW)是了解这些滤波器中噪声底限的一种途径。为了估计接收机设计的灵敏度,了解包括ENBW在内的噪声至关重要。本文将介绍用于计算接收器灵敏度的每个模块的特点,然后将它们放在一起进行计算。
原创
发布博客 2022.10.20 ·
5413 阅读 ·
2 点赞 ·
0 评论 ·
64 收藏

强化学习作为行为主义人工智能学派的典型代表,近几年与深度神经网络相结合形成的深度强化学习(DRL),达到了令人惊叹的智能水平:2015年DQN智能体玩视频游戏超越人类水平,2017年基于PPO算法的Open Five在《Dota》游戏中战胜人类顶尖职业玩家,2019年基于DRL的AlphaStar在《星际争霸II》游戏中战胜人类顶尖职业玩家。深度强化学习为通用人工智能(AGI)带来了新的希望! 然而,深度强化学习理论较为抽象,学习曲线陡峭,需要大量的时间和精力才能入门,很多硕士和博士往往浪费了大量时间在入门阶段,耽误了学习和科研进度。 本门课程的特点之一:精炼而不失重点。本门课程深入浅出,根据多年深度强化学习科研和项目实践经验,选取了强化学习入门所必须掌握的知识点,为学员构建一个最小而必要的强化学习知识体系,为后续的研究和论文专业以及工程实践打下坚实的基础。 本门课程的特点二:强调实战。为每个知识点精心设计设计编程实践练习,让学员在练习中理解和掌握知识点。 课程地址:强化学习作为行为主义人工智能学派的典型代表,近几年与深度神经网络相结合形成的深度强化学习(DRL),达到了令人惊叹的智能水平:2015年DQN智能体玩视频游戏超越人类水平,2017年基于PPO算法的Open Five在《Dota》游戏中战胜人类顶尖职业玩家,2019年基于DRL的AlphaStar在《星际争霸II》游戏中战胜人类顶尖职业玩家。深度强化学习为通用人工智能(AGI)带来了新的希望! 然而,深度强化学习理论较为抽象,学习曲线陡峭,需要大量的时间和精力才能入门,很多硕士和博士往往浪费了大量时间在入门阶段,耽误了学习和科研进度。 本门课程的特点之一:精炼而不失重点。本门课程深入浅出,根据多年深度强化学习科研和项目实践经验,选取了强化学习入门所必须掌握的知识点,为学员构建一个最小而必要的强化学习知识体系,为后续的研究和论文专业以及工程实践打下坚实的基础。 本门课程的特点二:强调实战。为每个知识点精心设计设计编程实践练习,让学员在练习中理解和掌握知识点。

发布动态 2022.10.18

【2022·深度强化学习课程】深度强化学习极简入门与Pytorch实战

强化学习作为行为主义人工智能学派的典型代表,近几年与深度神经网络相结合形成的深度强化学习(DRL),达到了令人惊叹的智能水平:2015年DQN智能体玩视频游戏超越人类水平,2017年基于PPO算法的Open Five在《Dota》游戏中战胜人类顶尖职业玩家,2019年基于DRL的AlphaStar在《星际争霸II》游戏中战胜人类顶尖职业玩家。然而,深度强化学习理论较为抽象,学习曲线陡峭,需要大量的时间和精力才能入门,很多硕士和博士往往浪费了大量时间在入门阶段,耽误了学习和科研进度。
原创
发布博客 2022.10.18 ·
1795 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

DRL经典文献阅读(一):策略梯度理论(Policy Gradient, PG)

将强化学习目标函数记为ρ\rhoρ,策略的参数记为θ\thetaθ。在策略梯度中,策略的参数通过梯度提升方式进行更新,更新部分与梯度成成比:∇θ≈α∂ρ∂θ(1)
abla\theta\approx \alpha\frac{\partial\rho}{\partial\theta}\tag{1}∇θ≈α∂θ∂ρ​(1)智能体的目标函数,常用的定义方式有两种。第一种是多步取均值的方式ρ(π)=lim⁡n→∞1nE{r1+r2+⋯+rn∣π}=∑sdπ(s)∑aπ(s,a)Rsa(2)\rho(\pi
原创
发布博客 2022.10.17 ·
672 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

强化学习经典文献R-learning

发布资源 2022.10.17 ·
pdf

Deep-Learning-with-Pytorch

发布资源 2022.10.17 ·
ipynb

梯度下降原理与编程实现

发布资源 2022.10.17 ·
ipynb

【jupyter notebook】强化学习中的时间差分算法实现笔记

发布资源 2022.10.17 ·
ipynb

【jupyter notebook】强化学习中的蒙特卡洛方法-算法实现笔记

发布资源 2022.10.17 ·
ipynb
加载更多