
如何快速使用Python神经网络识别手写字符
CNN卷积神经网络是一种深度模型。它其实老早就已经可以成功训练并且应用了(最近可能deeplearning太火了,CNNs也往这里面靠。
虽然CNNs也属于多层神经网络架构,但把它置身于DL家族,还是有不少人保留自己的理解的)。
谷歌人工智能写作项目:小发猫

如何用python 自己写一个ocr
您好,自己实现OCR的话您需要学习模式识别/机器学习相关知识以及计算机视觉的部分知识A8U神经网络。
首先需要定位文本区域,阈值化,切割为单字符,最难的部分是字符的识别,如果识别的文本是规范的,可以考虑用匹配滤波器(不推荐,但简单),或向量空间搜索,正规的方式还是推荐使用机器学习中神经网络的卷积神经网络(CNN)来训练和识别。
为训练CNN您可能还需要一些数据挖掘与图像处理方面的知识,以方便您获取数据集(即字符图片集)来训练CNN,这通常需要大量的数据与较长的训练时间(时间与字符图片大小、字符图片集数量、神经网络结构与规模等相关)
python验证码识别
orc文字识别,现在比较流行的是通过人工智能训练CNN神经网络来识别。大体流程准备训练数据。训练数据可以自己写个程序生成验证码,和标准答案。构建CNN模型。
这个比较简单,使用keras框架,5分钟的事情。训练。不停地把数据feed给程序,直到准确率达到你的期望,推荐使用GPU加速预测。加载模型,把验证码图片feed给模型,得出结果希望对你有帮助。
如何利用Python做简单的验证码识别
1 摘要验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。
本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义。
然后经过了一年的时间,笔者又研究和get到了一种更强大的基于CNN卷积神经网络的直接端到端的验证识别技术(文章不是我的,然后我把源码整理了下,介绍和源码在这里面):基于python语言的tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)2 关键词关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL3 免责声明本文研究所用素材来自于某旧Web框架的网站 完全对外公开 的公共图片资源。
本文只做了该网站对外公开的公共图片资源进行了爬取, 并未越权 做任何多余操作。本文在书写相关报告的时候已经 隐去 漏洞网站的身份信息。本文作者 已经通知 网站相关人员此系统漏洞,并积极向新系统转移。
本报告的主要目的也仅是用于 OCR交流学习 和引起大家对 验证安全的警觉 。
4 引言关于验证码的非技术部分的介绍,可以参考以前写的一篇科普类的文章:互联网安全防火墙(1)--网络验证码的科普里面对验证码的种类,使用场景,作用,主要的识别技术等等进行了讲解,然而并没有涉及到任何技术内容。
本章内容则作为它的 技术补充 来给出相应的识别的解决方案,让读者对验证码的功能及安全性问题有更深刻的认识。
5 基本工具要达到本文的目的,只需要简单的编程知识即可,因为现在的机器学习领域的蓬勃发展,已经有很多封装好的开源解决方案来进行机器学习。
普通程序员已经不需要了解复杂的数学原理,即可以实现对这些工具的应用了。
主要开发环境:python3.5pythonSDK版本PIL图片处理库libsvm开源的svm机器学习库关于环境的安装,不是本文的重点,故略去。
6 基本流程一般情况下,对于字符型验证码的识别流程如下:准备原始图片素材图片预处理图片字符切割图片尺寸归一化图片字符标记字符图片特征提取生成特征和标记对应的训练数据集训练特征标记数据生成识别模型使用识别模型预测新的未知图片集达到根据“图片”就能返回识别正确的字符集的目标7 素材准备7.1 素材选择由于本文是以初级的学习研究目的为主,要求 “有代表性,但又不会太难” ,所以就直接在网上找个比较有代表性的简单的字符型验证码(感觉像在找漏洞一样)。
最后在一个比较旧的网站(估计是几十年前的网站框架)找到了这个验证码图片。原始图:放大清晰图:此图片能满足要求,仔细观察其具有如下特点。
有利识别的特点 :由纯阿拉伯数字组成字数为4位字符排列有规律字体是用的统一字体以上就是本文所说的此验证码简单的重要原因,后续代码实现中会用到不利识别的特点 :图片背景有干扰噪点这虽然是不利特点,但是这个干扰门槛太低,只需要简单的方法就可以除去7.2 素材获取由于在做训练的时候,需要大量的素材,所以不可能用手工的方式一张张在浏览器中保存,故建议写个自动化下载的程序。
主要步骤如下:通过浏览器的抓包功能获取随机图片验证码生成接口批量请求接口以获取图片将图片保存到本地磁盘目录中这些都是一些IT基本技能,本文就不再详细展开了。
关于网络请求和文件保存的代码,如下:defdownloads_pic(**kwargs): pic_name=('pic_name',None) url='httand_code_captcha/' res=(url,stream=True) withopen(pic_path+pic_name+'.bmp','wb')asf: forchunkinres.iter_content(chunk_size=1024): ifchunk: #filteroutkeep-alivenewchunks &nbs

本文介绍了如何使用Python结合卷积神经网络(CNN)进行手写字符和验证码识别。从素材获取、图片预处理、字符切割到模型训练,详细阐述了整个流程,包括图像二值化、噪声点去除、特征提取和SVM模型训练。此外,还提及了语音识别和简单图像识别的方法。
最低0.47元/天 解锁文章
971

被折叠的 条评论
为什么被折叠?



