大模型——基于混合检索重排序策略的大模型增强方法

基于混合检索重排序策略的大模型增强方法

核心研究问题

如何优化检索增强生成(RAG)技术,特别是在知识库存储方式检索结果重排序策略上,以显著提升大语言模型(LLM)在事实性问答任务中的准确率

主要发现与贡献

  1. 知识库存储方式至关重要:段落切分优于固定长度切分

    • 问题: 传统RAG系统常将知识库切分为固定长度(如256、512、1024字符)的文本块进行向量存储和检索。这种方式虽然处理效率高,但破坏了文本的自然段落结构信息

    image-20250615192104864

    • 发现: 实验证明,将知识库按自然段落结构切分存储,相比固定长度切分,能大幅提升LLM依据检索知识回答问题的准确率(在多个模型上提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值