智能学习 | MATLAB实现Bee-CNN蜜蜂算法优化卷积神经网络图像分类预测

19 篇文章 ¥69.90 ¥99.00
本文介绍了使用Bee-CNN蜜蜂算法优化的卷积神经网络在MATLAB中进行图像分类预测的方法。通过Bee-CNN优化权重和偏置,提升CNN的分类效果。关键参数包括样本数量、图像尺寸、类别数、最大迭代次数和模糊C均值簇数等。文章包含主程序及辅助函数,并提供了相关参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能学习 | MATLAB实现Bee-CNN蜜蜂算法优化卷积神经网络图像分类预测

分类效果

1
2
3

4

基本介绍

Bee-CNN蜜蜂算法优化卷积神经网络是一种模糊进化深度学习(优化权重和偏置),CNN 用于对 图像类别进行分类。 CNN 训练后,创建初始模糊模型以帮助学习过程,CNN 网络权重来自全连接层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值