锂电池剩余寿命预测 | Matlab基于LSTM-Attention的锂电池剩余寿命预测

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab基于LSTM-Attention的锂电池剩余寿命预测(单变量),长短期记忆神经网络融合注意力机制(自注意力机制,多头注意力机制)(单变量)

运行环境Matlab2023b及以上。

首先从NASA数据集中提取电池容量特征,然后基于B0005号电池数据训练,用B0006号电池数据测试预测。

构建一个带有注意力机制的LSTM模型,以便在序列数据中学习长期依赖关系并关注重要的时间点。使用准备好的数据集对模型进行训练,使用测试集评估模型的性能。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于LSTM-Attention的锂电池剩余寿命预测


%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

锂电池寿命预测是一项重要的研究领域,对于电池使用者和制造商来说,准确预测锂电池的寿命有助于提高电池的使用效率和可靠性。 基于LSTM长短期记忆)神经网络锂电池寿命预测是一种有效的方法。LSTM是一种能够处理间序列数据的深度学习模型,它可以学习间序列中的长期依赖关系。 在实现锂电池寿命预测的Python代码中,可以使用TensorFlow作为深度学习框架。首先,需要准备锂电池间序列数据集,包括电池的特征参数和寿命标签。 接着,可以使用LSTM模型进行训练和预测。首先,定义一个多层LSTM模型,可以设置多个LSTM层和全连接层来提高模型的性能。然后,通过编写模型的损失函数和优化器,来训练模型以拟合数据集。 在训练过程中,可以使用批量梯度下降或随机梯度下降算法来更新模型的权重和偏置,最小化预测值与实际值之间的误差。训练过程可以迭代多个周期,直到模型的性能收敛或达到预定的终止条件。 在模型训练完成后,可以使用该模型来预测新的锂电池寿命。将待预测的电池特征参数输入到已经训练好的模型中,模型会输出对应的寿命预测值。 需要注意的是,锂电池寿命预测是一个复杂的问题,受到多种因素的影响,如充放电循环次数、温度、电流等。因此,在构建和训练LSTM模型,需要选择合适的特征参数,并进行适当的预处理和特征工程,以提高预测的准确性。 综上所述,通过使用Python实现基于LSTM神经网络锂电池寿命预测,可以得到较准确的预测结果,并有助于提高锂电池的使用效率和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值