聚类分析 | IPOA优化FCM模糊C均值聚类优化算法

效果一览

在这里插入图片描述

基本介绍

(多图聚类)IPOA优化FCM模糊C均值聚类优化算法,matlab代码,超多图

基于改进的鹈鹕优化算法(IPOA)优化FCM模糊C均值聚类优化,matlab代码,直接运行!

一、创新独家,先用先发,注释清晰,送IPOA参考文献!

二、优化参数[五角星][五角星][五角星]
1、优化后的模糊因子m
2、优化后的最大迭代次数
3、优化后的最佳适应度值

三、图例(超多图,满足paper需求)[五角星][五角星][五角星]
1、IPOA优化后的聚类图
2、IPOA收敛曲线
3、聚类类型分布饼状图
4、优化参数之间的三维立体图
5、适应度变化曲线
6、模糊因子m参数分布直方图
7、最大迭代次数分布直方图

四、IPOA算法介绍
改进点如下:
1、随机初始化种群
2、加入Levy飞行策略
3、基于适应度的搜索策略
4、搜索与开发的平衡策略
5、动态参数调整
6、贪婪策略:适应度优胜者策略

程序设计

  • 完整程序私信博主回复聚类分析 | IPOA优化FCM模糊C均值聚类优化算法

参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值