聚类分析 | NRBO-GMM聚类优化算法

效果一览

在这里插入图片描述

基本介绍

(创新)NRBO-GMM聚类优化算法

(NRBO聚类优化,创新,独家)
牛顿-拉夫逊优化算法优化GMM高斯混合聚类优化算法
matlab语言,一键出图,直接运行

1.牛顿-拉夫逊优化算法(Newton-Raphson-based optimizer, NRBO)是一种新型的元启发式算法(智能优化算法),该成果由Sowmya等人于2024年2月发表在中科院2区Top SCI期刊《Engineering Applications of Artificial Intelligence》上,对聚类算法优化效果显著;

2.完整展示优化迭代过程,可视化每一次迭代变换,代码注释清晰,自行解读容易

3.[hot]输出优化结果包括:优化后的质心,最大对数似然数,最佳协方差矩阵类型,最佳正则化值

4.增加优化参数:
除了优化质心和最大对数似然数之外,还增加优化了协方差矩阵的类型(如full&diagonal),还有正则化值

5.输出图例如图所示包括:[hot][hot]
A-对数似然值变化曲线(迭代过程曲线图),
B-NRBO-GMM聚类图(聚类结果图),
C-正则化值对模型性能的影响图
D-协方差矩阵类型对模型性能的影响图

程序设计

  • 完整程序私信博主回复NRBO-GMM聚类优化算法

参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值