聚类分析 | AP近邻传播聚类算法

效果一览

在这里插入图片描述

基本介绍

AP近邻传播聚类算法

AP(Affinity Propagation)近邻传播聚类算法是一种基于数据点之间的相似度矩阵来进行聚类的算法。该算法不需要事先设定聚类簇的个数,而是通过在数据点之间传播消息来确定最终的簇中心。

在AP聚类算法中,每个数据点都被认为是潜在的簇中心,然后数据点之间的相似度信息被用来更新数据点之间的消息传递。经过多次迭代,最终确定每个数据点所属的簇。

AP算法的优点是不需要预先指定簇的个数,同时能够很好地处理高维数据和非凸数据。然而,它的缺点是算法的时间复杂度较高且对初始值敏感。

程序设计

  • 完整程序私信博主回复AP近邻传播聚类算法

参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值