SHAP分析+BiLSTM神经网络+注意力机制,Matlab代码实现,作者:机器学习之心!

SHAP分析+BiLSTM神经网络+注意力机制,Matlab代码实现,作者:机器学习之心!

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

基于SHAP分析的特征选择和贡献度计算,Matlab2023b代码实现;基于MATLAB的SHAP可解释BiLSTM-Attention回归模型,敏感性分析方法。

详细介绍

  1. 引言
    在正向渗透(Forward Osmosis, FO)过程中,水通量的精准预测对于优化膜分离工艺和提升系统效率具有重要工程意义。然而,传统机理模型常受限于复杂的传质动力学方程,难以兼顾预测精度与可解释性。本研究提出一种融合BiLSTM-Attention双向长短期记忆神经网络注意力机制与SHapley加性解释(SHAP)的混合建模框架,旨在构建高精度且可解释的回归模型,以解析操作参数对水通量的非线性影响机制。该模型以膜面积、进料/汲取液流速及浓度等关键操作参数为输入特征,通过SHAP方法量化特征贡献,为工艺优化提供透明化决策支持。

  2. 方法论
    2.1 数据准备与预处理
    实验数据采集自FO工艺数据库,包含六维参数(5输入特征,1输出目标)。输入特征涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。数据经归一化处理,以消除量纲差异。

2.2 BiLSTM-Attention模型构建与训练
BiLSTM层
捕获数据的时序特征。
自注意力层(Self-Attention)
捕捉输入序列全局依赖关系,通过注意力机制增强模型表达能力。
全连接层(Fully Connected Layer)
映射到目标输出维度(回归任务)。
采用MATLAB R2023b实现BiLSTM-Attention架构。使用Adam优化器,结合学习率衰减(初始学习率1e-3,450轮后衰减为初始值的10%)和L2正则化(系数1e-4)防止过拟合。
2.3 SHAP可解释性分析
SHAP值基于合作博弈论中的Shapley值理论,量化特征对模型预测的边际贡献。通过Shapley值量化每个特征对预测结果的贡献,提供模型可解释性。

  1. 结论
    本研究成功构建了基于BiLSTM-Attention与SHAP的可解释回归模型,实现了FO水通量的高精度预测与特征贡献解析。方法学创新体现于:引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角。
    实现步骤
    数据准备:

导入数据并随机打乱。

划分训练集和测试集,归一化至[0, 1]区间。

调整数据格式为序列输入(reshape和cell格式)。

模型构建:

定义输入层、位置编码层、自注意力层和全连接层。

通过加法层将输入与位置编码相加。

训练与预测:

使用trainNetwork进行模型训练。

预测结果反归一化后计算误差指标。

可视化与解释:

绘制预测结果对比图、误差分布图及线性拟合图。

计算SHAP值并生成特征重要性图和依赖图。

应用场景
回归预测任务:适用于需要预测连续值的场景,如:

时序预测(股票价格、能源需求、气象数据)。

工业预测(设备寿命、产量预测)。

商业分析(销售额、用户行为预测)。

需解释性的场景:SHAP分析可帮助理解特征影响,适用于:

金融风控(解释贷款违约风险的关键因素)。

医疗诊断(分析生理指标对疾病预测的贡献)。

科学研究(识别实验数据中的关键变量)。

数据集
在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复SHAP分析+BiLSTM神经网络+注意力机制,Matlab代码实现,作者:机器学习之心!

数据预处理与划分:导入数据并划分为训练集(70%)和测试集(30%),进行归一化处理以适应模型输入。

模型构建:搭建基于BiLSTM-Attention结构,包含BiLSTM层、自注意力机制层和全连接层。
模型训练与预测:使用Adam优化器训练模型,并在训练集和测试集上进行预测。

性能评估:计算R²、MAE、MAPE、MSE、RMSE等回归指标,并通过图表展示预测结果与真实值的对比。

模型解释:通过SHAP(Shapley值)分析特征重要性,生成摘要图和依赖图,增强模型可解释性。


.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');
%% 导入数据
res = xlsread('data.xlsx'); 
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% ------------------ SHAP值计算 ------------------
x_norm_shap = mapminmax('apply', data_shap', x_settings)'; % 直接应用已有归一化参数
% 初始化SHAP值矩阵
shapValues = zeros(size(x_norm_shap));
refValue = mean(x_norm_shap, 1); % 参考值为特征均值
% 计算每个样本的SHAP值
rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
for i = 1:numSamples
    x = shap_x_norm(i, :);  % 当前样本(归一化后的值)
    shapValues(i, :) = shapley_(net, x, refValue_norm); % 调用SHAP函数
end



参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

SHAPSHapley Additive exPlanations)是一种用于解释机器学习模型预测结果的技术,它通过计算每个特征对最终预测值的贡献程度来揭示模型的行为。在Matlab中,可以结合已有的深度学习工具箱和统计分析功能,将SHAP应用于卷积神经网络(CNN)分类任务上。 ### 具体步骤如下: #### 1. **加载预训练的CNN** 首先需要准备一个已经完成训练并可用于分类任务的CNN模型。例如,你可以直接使用MATLAB提供的内置模型如`ResNet50`, 或者导入你自己训练好的模型文件。 ```matlab % 加载内置模型 ResNet-50 net = resnet50; ``` 如果用的是自定义模型,则从`.mat`或其他存储格式读取即可。 #### 2. **选择样本数据集** 准备一些测试图像作为输入样本来观察其决策过程。这些图像是我们希望理解为什么会被归入某个特定类别的一部分示例。 ```matlab imds = imageDatastore('path_to_images', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); testImages = imds.Files(1:16); % 挑选前16张图片作展示用途 ``` #### 3. **生成背景数据** SHAP 值依赖于参考点——即“背景”分布的数据集合。通常会选取一部分无偏倚、能够代表整体特性的数据组合作为基准对比标准。 ```matlab backgroundData = readall(imds); numBackgroundSamples = min(size(backgroundData,4),100); randomIndices = randperm(numel(testImages), numBackgroundSamples); baselineSet = backgroundData(:,:,:,randomIndices); ``` 这里随机采样的目的是为了降低运算复杂度同时保证足够的代表性。 #### 4. **构建SHAP解释器实例** MATLAB 的 Deep Learning Toolbox 提供了 `shapley` 函数支持创建基于梯度积分路径法的Shapley值估计器,并适用于各种类型的DNN架构包括但不限于 CNNs. ```matlab explainer = shapley(net,... 'InputLayer','data',... 'OutputLayer','fc1000',... 'Baseline', baselineSet,... 'UseParallel',true); ``` 上述命令指定了待评估的目标层以及基线设定等关键选项;其中 `'UseParallel'` 参数开启并行处理加速整个流程运行速度。 #### 5. **应用SHAP进行可视化解读** 最后一步就是利用先前配置完毕的对象作用到具体案例之上,并绘制相应图形帮助直观感知各要素重要性排序状况。 ```matlab figure; for i=1:length(testImages) img = imread(testImages{i}); explanationResults = explainer.explain(img,'ObservationContributionThreshold',0.01); subplot(4,ceil(length(testImages)/4),i); imshow(explanationResults.Image); title([char(classNames{explanationResults.Class}) ' (Score:' sprintf('%0.2f', max(scores)) ')']); end ``` 以上脚本片段依次遍历所有指定测验素材,并逐一调用explain()函数获取对应像素级影响权重绘制成热力图表呈现出来。 --- ### 注意事项 尽管SHAP能很好地提供全局视角下变量间关联信息量大小衡量依据,但在实际操作过程中仍需注意以下几点局限之处: - 计算成本较高尤其是当面对高维度输入向量的时候; - 对噪声较为敏感可能导致某些无关紧要因素被误判为主导因子之一; - 并非总是完全忠实地反映真实世界因果关系仅限描述模式匹配规律方面有效果较好而已。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值