PO鹦鹉算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现PO鹦鹉算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
OOA鱼鹰算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现OOA鱼鹰算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
DBO蜣螂算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现DBO蜣螂算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BFO鳑鲏鱼算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现BFO鳑鲏鱼算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
HBA蜜獾算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现HBA蜜獾算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
SSA麻雀算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现SSA麻雀算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
PSO粒子群算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现PSO粒子群算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
WOA鲸鱼算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现WOA鲸鱼算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
HLOA角蜥蜴算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现HLOA角蜥蜴算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
GWO灰狼算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现GWO灰狼算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BKA黑翅鸢算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现BKA黑翅鸢算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。
特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
GA-BP遗传算法优化BP神经网络多输变量时间序列预测(MATLAB完整源码和数据)
1.MATLAB实现GA-BP遗传算法优化BP神经网络多输变量时间序列预测(完整源码和数据)
2.(多指标,多图),输入多个特征,输出单个变量,考虑历史特征;优化权值和阈值。
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
3.代码特点:参数化编程。
4.适用对象:大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
DBO-BP蜣螂算法优化BP神经网络时间序列预测(Matlab完整源码和数据)
1.DBO-BP蜣螂算法优化BP神经网络时间序列预测(Matlab完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
RIME-GPR基于霜冰算法优化高斯过程回归的数据回归预测(Matlab完整源码和数据)
Matlab基于RIME-GPR基于霜冰算法优化高斯过程回归的数据回归预测(完整源码和数据)
1.Matlab实现RIME-GPR基于霜冰算法优化高斯过程回归多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BiTCN-BiLSTM-Attention双向时间卷积双向长短期记忆网络注意力机制多变量回归预测(Matlab完整源码和数据)
1.Matlab实现BiTCN-BiLSTM-Attention双向时间卷积双向长短期记忆神经网融合注意力机制多变量回归预测(完整源码和数据);
2.输入多个特征,输出单个变量,回归预测,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BES-LSSVM秃鹰算法优化最小支持向量机数据分类预测(Matlab完整源码和数据)
1.Matlab实现BES-LSSVM秃鹰算法优化最小支持向量机数据分类预测(Matlab完整源码和数据),优化参数为,优化RBF核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
SAO-LSSVM雪融算法优化最小支持向量机数据分类预测(Matlab完整源码和数据)
1.Matlab实现SAO-LSSVM雪融算法优化最小支持向量机数据分类预测(Matlab完整源码和数据),优化参数为,优化RBF核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
6.作者介绍:某大厂资深算法工程师,从事Matlab、Python算法仿真工作8年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。
PCA-SVM主成分分析结合支持向量机多特征分类预测(Matlab完整源码和数据)
1.Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测,excel数据集,main是程序文件;
2.环境需要在MATLAB2018及以上版本运行;
3.多特征数据经过PCA主成分降维后输入支持向量机中,实现多输入分类预测,可以实现二分类及多分类预测。
注:数据和文件放在一个文件夹。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
变工况+DAGCN域对抗图卷积网络故障诊断(Python完整源码)
基于无监督域自适应(UDA)的方法在变工况机械故障诊断方面取得了很大进展。在UDA中,三种类型的信息,包括类标签、领域标签和数据结构,是连接已标记的源域和未标记的目标域所必需的。然而,现有的基于uda的方法大多只使用了前两种信息,而忽略了数据结构的建模,这使得深度网络提取的特征所包含的信息不完整。为了解决这一问题,提出了一种域对抗图卷积网络(DAGCN)来对统一深度网络中的三类信息进行建模并实现UDA。前两类信息分别由分类器和域鉴别器建模。
在数据结构建模中,首先使用卷积神经网络(CNN)从输入信号中提取特征。然后,将CNN特征输入到所提出的图生成层中,通过挖掘样本结构特征之间的关系来构建实例图。然后,利用图卷积网络对实例图进行建模,利用最大均值差异度量来估计不同域实例图的结构差异。两个实例的实验结果表明,本文提出的DAGCN算法不仅在比较方法中获得了最好的性能,而且能够提取可转移的特征进行领域自适应。
基于MAMbaS+transformer时间序列预测模型(Python完整源码和数据)
1.MAMBAS,transformer,python代码,pytorch架构
2.适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。
3.MAMBAS是在2024年5月顶会提出的一个对MAMBA的改进版。首先,简单地让 SSM 参数成为输入的函数,解决了它们在离散模态方面的弱点,允许模型根据当前标记选择性地沿序列长度维度传播或忘记信息。其次,尽管这种变化阻止了高效卷积的使用,但我们在循环模式下设计了一种硬件感知的并行算法。我们将这些选择性 SSM 集成到一个简化的端到端神经网络架构中,无需注意,甚至没有 MLP 块。
4.创新性非常高。功能如下:多变量输入,单变量输出,多时间步预测,单时间步预测,评价指标:R方 RMSE MAE MAPE,对比图
5.数据从excel/csv文件中读取。
SMA-BP黏菌算法优化BP神经网络时间序列预测(Matlab完整源码和数据)
1.SMA-BP黏菌算法优化BP神经网络时间序列预测(Matlab完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
CEEMDAN-Kmeans-VMD-NRBO-Transformer多变量光伏功率预测(Matlab完整源码和数据)
1.Matlab实现CEEMDAN-Kmeans-VMD-NRBO-Transformer融合K均值聚类的数据双重分解+NRBO优化+Transformer多元时间序列预测(完整源码和数据)运行环境Matlab2023b
2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为NRBO-Transformer模型的目标输出分别预测后相加。
3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。
4.算法新颖。⑴ CEEMDAN模型处理高频数据,具有更高的准确率,能够跟踪数据的趋势以及变化。⑵ VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD系列更好,因此将重构的数据通过VMD模型分解,提高了模型的准确度。(3)NRBO牛顿-拉夫逊算法优化参数为自注意力机制头数、正则化系数、学习率!
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序
SO-BP蛇群算法优化BP神经网络时间序列预测(Matlab完整源码和数据)
1.SO-BP蛇群算法优化BP神经网络时间序列预测(Matlab完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
TSOA-TCN-Attention凌日算法优化时间卷积神经网络融合注意力机制多变量时间序列电价预测(Matlab完整源码数据)
1.TSOA-TCN-Attention凌日算法优化时间卷积神经网络融合注意力机制多变量时间序列电价预测(Matlab完整源码数据)
2.输出预测图、迭代曲线图、R2、MAE、MSE、RMSE等评价指标,运行环境Matlab2023b及以上,优化学习率, 卷积核大小, 卷积核数量。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
GRU-Attention门控循环单元融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.GRU-Attention门控循环单元融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
2.输出预测图、误差图、R2、MAE、RMSE等评价指标,运行环境Matlab2023b及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
基于卡尔曼滤波器的电池充电状态估计(Matlab完整源码)
1.基于matlab的锂电池的模型构建、参数识别和验证、SoC估计,Simulink采用扩展卡尔曼滤波器(EKF)。
2.采用m脚本(EKF和(无迹卡尔曼滤波)UKF)。程序已调通,可直接运行。运行环境Matlab2023b及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信
BiLSTM-Attention双向长短期记忆网络融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.BiLSTM-Attention双向长短期记忆神经网络融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
2.输出预测图、误差图、R2、MAE、RMSE等评价指标,运行环境Matlab2023b及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
LSTM-Attention长短期记忆神经网络融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.LSTM-Attention长短期记忆神经网络融合注意力机制多变量多步预测,光伏功率预测(Matlab完整源码和数据)
2.输出预测图、误差图、R2、MAE、RMSE等评价指标,运行环境Matlab2023b及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
GRU门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.GRU门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)
2.输出预测图、误差图、R2、MAE、MAPE、MSE、RMSE等评价指标,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BiLSTM双向长短期记忆神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.BiLSTM双向长短期记忆神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)。
2.输出预测图、误差图、R2、MAE、MAPE、MSE、RMSE等评价指标,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
LSTM长短期记忆神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)
1.LSTM长短期记忆神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)。
2.输出预测图、误差图、R2、MAE、RMSE等评价指标,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
HO河马优化算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现HO河马优化算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
CPO冠豪猪优化算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现CPO冠豪猪优化算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
NRBO牛顿-拉夫逊算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现NRBO牛顿-拉夫逊算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
GOOSE鹅算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现GOOSE鹅算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
DE差分进化算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现DE差分进化算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
BWO白鲸优化算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现BWO白鲸优化算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
PID搜索算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现PID搜索算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
DCS算法特征选择并同时优化XGBOOST参数数据分类预测(Matlab完整源码和数据)
1.Matlab实现DCS算法特征选择并同时优化XGBOOST参数数据分类预测(完整源码和数据)。特征选择的参数和XGBOOST的三个参数:最大迭代次数,深度,学习率。
2.输出预测分类图、混淆矩阵图、预测准确率,运行环境Matlab2023及以上。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
基于WTC+transformer时间序列组合预测模型(Python完整源码和数据)
WTC+transformer时间序列组合预测模型,创新点,超级新。先发先得,高精度代码。
WTC卷积机制是2024年7月15日发表的卷积结构(热乎的超级新,新的不能在新了)。人们尝试通过增加卷积神经网络Q(CNN)内核的大小来模拟视觉变换器(VITs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在达到全局感受野之前就已饱和。
原来WTC卷积是用来做图像的,本代码尝试将它转移用到时间序列中,二维转一维,利用WTC卷积进行特征提取,将提取的结果放入transformer进行预测,预测结果非常不错!python代码,pytorch架构
适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。
1.多变量输入,单变量输出
2.多时间步预测,单时间步预测,多指标。代码自带数据,一键运行,xlsx文件读取数据,也可以替换自己数据集很简单。