
DBN深度置信网络
文章平均质量分 87
DBN深度置信网络,模型专栏不少于15篇内容,长期更新,每篇文章内含完整源码,部分函数文件和数据集私信博主获取,可以通过评论区留言或私信咨询模型。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
机器学习之心
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类、降维、优化和评价等程序设计和案例分析,文章底部有博主联系方式。
展开
-
分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测
分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测原创 2023-06-19 09:41:10 · 660 阅读 · 0 评论 -
分类预测 | MATLAB实现DBN深度置信网络多输入分类预测
分类预测 | MATLAB实现DBN深度置信网络多输入分类预测原创 2023-06-12 19:10:14 · 343 阅读 · 0 评论 -
回归预测 | MATLAB实现PSO-DBN粒子群算法优化深度置信网络多输入单输出回归预测
回归预测 | MATLAB实现PSO-DBN粒子群算法优化深度置信网络多输入单输出回归预测原创 2023-02-25 16:36:02 · 640 阅读 · 0 评论 -
回归预测 | MATLAB实现DBN-RBF深度置信网络结合RBF神经网络多输入单输出回归预测
回归预测 | MATLAB实现DBN-RBF深度置信网络结合RBF神经网络多输入单输出回归预测原创 2023-02-25 15:54:09 · 772 阅读 · 0 评论 -
回归预测 | MATLAB实现DBN多层深度置信网络多输入单输出回归预测
回归预测 | MATLAB实现DBN多层深度置信网络多输入单输出回归预测原创 2023-02-25 14:57:05 · 641 阅读 · 0 评论 -
回归预测 | MATLAB实现DBN-BP深度置信网络结合BP神经网络多输入单输出回归预测
回归预测 | MATLAB实现DBN-BP深度置信网络结合BP神经网络多输入单输出回归预测原创 2023-02-25 14:27:42 · 2188 阅读 · 4 评论 -
时序预测 | MATLAB实现时间序列回归之偏差估计
时序预测 | MATLAB实现时间序列回归之偏差估计目录时序预测 | MATLAB实现时间序列回归之偏差估计基本介绍程序设计学习小结参考资料基本介绍最初,滞后结构可能包括对多个近似时间的经济因素的观察。但是,由于经济惯性,时间 观测值很可能与时间观测值相关。滞后结构可能会通过包含一系列对 DGP 仅具有边际贡献的滞后预测变量来过度指定响应的动态。该规范会夸大过去历史的影响,而未能对模型施加相关限制。扩展滞后结构还需要扩展样本前数据,从而减少样本量并减少估计程序中的自由度数。 因此,过度指定的模原创 2021-12-03 12:24:27 · 1099 阅读 · 0 评论 -
深度学习 | MATLAB Deep Learning Toolbox layers 参数设定
深度学习 | MATLAB Deep Learning Toolbox layers目录 深度学习 | MATLAB Deep Learning Toolbox layersLayerDAG NetworkType拓展学习参考资料致谢MATLAB Deep Learning Toolbox是深度学习工具箱,可以构建深度神经网络模型。实验表明MATLAB2020是目前该工具箱较为完善版本。本文主要介绍该工具箱用于构建深度神经网络的layers参数设置。Layer定义用于深度学习的神经网络架构的层原创 2021-06-19 16:32:35 · 3403 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之残差诊断
时序预测 | MATLAB实现时间序列回归之残差诊断目录时序预测 | MATLAB实现时间序列回归之残差诊断基本介绍程序设计参考资料致谢基本介绍虚假回归通常伴随着残差自相关的迹象,这可以作为诊断线索。 下面显示了上述每个随机游走回归中残差序列的自相关函数 (ACF) 的分布:颜色对应于上面条形图中的漂移值。 该图显示了大多数模拟的扩展的、显着的残差自相关。上述模拟得出的结论是,无论趋势与否,所有回归变量都应进行积分测试。然后通常建议通过差分而不是按时间回归来消除 DS 变量的趋势,以实现平原创 2021-09-13 18:42:36 · 2861 阅读 · 1 评论 -
时序预测 | MATLAB实现时间序列回归之特征点检测
时序预测 | MATLAB实现时间序列回归之特征点检测目录时序预测 | MATLAB实现时间序列回归之特征点检测基本介绍特征点概念删除性诊断程序设计参考资料致谢基本介绍本文主要工作是检测时间序列数据中的有影响的观测值,并检验它们对多元线性回归模型的影响。在考虑影响 OLS 估计的经验限制时,Belsley 等人建议首先解决共线性问题。 下一步是寻找有影响力的观察结果,它们的存在,无论是单独的还是成组的,都会对回归结果产生可测量的影响。将“特征点”的基本度量概念与“异常值”的更主观的概念区分开来原创 2021-09-09 23:13:09 · 1161 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之伪回归
时序预测 | MATLAB实现时间序列回归之伪回归目录时序预测 | MATLAB实现时间序列回归之伪回归基本介绍数据下载程序设计趋势分析随机趋势参考资料致谢基本介绍此示例考虑趋势变量、伪回归和多元线性回归模型中的调节方法。在多元线性回归 (MLR) 模型中,有时会怀疑随时间变化的预测变量。 然而,单独地,它们不需要影响普通最小二乘法 (OLS) 估计。特别是,不需要对每个预测变量进行线性化和去趋势化。 如果预测变量的线性组合可以很好地描述响应值,则 MLR 模型仍然适用,并且不会违反原创 2021-09-13 18:41:09 · 1231 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之偏差仿真
时序预测 | MATLAB实现时间序列回归之偏差仿真目录时序预测 | MATLAB实现时间序列回归之偏差仿真基本介绍程序设计学习小结参考资料基本介绍滞后预测变量影响多元线性回归模型的最小二乘估计。许多计量经济学模型是动态的,使用滞后变量来整合随时间的反馈。 相比之下,静态时间序列模型代表专门响应当前事件的系统。滞后变量有几种类型:Distributed Lag (DL)Autoregressive (AR)Moving Average (MA)动态模型通常使用不同类型滞后变量的线性原创 2021-12-03 12:23:08 · 1345 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之共线性分析和岭回归
时序预测 | MATLAB实现时间序列回归之共线性和方差估计目录时序预测 | MATLAB实现时间序列回归之共线性和方差估计基本介绍程序设计相关分析方差估计共线性诊断岭回归学习小结参考资料致谢基本介绍此示例说明如何检测预测变量之间的相关性并解决估计量方差较大的问题,它是有关时间序列回归模型问题。对于真实的数据生成过程 (DGP),经济模型总是没有明确规定。模型预测变量永远不会完全代表产生经济响应的所有因果因素。然而,被忽略的变量在创新过程中继续发挥其影响,迫使模型系数解释它们并没有真正解释原创 2021-09-06 21:07:54 · 1717 阅读 · 0 评论 -
时序预测 | MATLAB实现DBN深度置信网络时间序列预测
时序预测 | MATLAB实现DBN深度置信网络时间序列预测原创 2022-08-11 22:59:44 · 1664 阅读 · 0 评论 -
回归预测 | MATLAB实现DBN深度置信网络多输入单输出回归预测
回归预测 | MATLAB实现DBN深度置信网络多输入单输出回归预测原创 2022-08-11 22:17:46 · 1947 阅读 · 0 评论