
GBDT梯度提升树
文章平均质量分 83
GBDT梯度提升树,模型专栏不少于15篇内容,长期更新,每篇文章内含完整源码,部分函数文件和数据集私信博主获取,可以通过评论区留言或私信咨询模型。
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
机器学习之心
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类、降维、优化和评价等程序设计和案例分析,文章底部有博主联系方式。
展开
-
可解释机器学习 | Python实现LGBM-SHAP可解释机器学习
可解释机器学习 | Python实现LGBM-SHAP可解释机器学习原创 2024-12-01 22:33:14 · 295 阅读 · 0 评论 -
分类预测 | Matlab实现DT决策树多特征分类预测
分类预测 | Matlab实现DT决策树多特征分类预测原创 2024-01-27 12:48:36 · 422 阅读 · 0 评论 -
机器学习 | Python实现GBDT梯度提升树模型设计
机器学习 | Python实现GBDT梯度提升树模型设计原创 2023-08-13 13:58:13 · 849 阅读 · 0 评论 -
时序预测 | Python实现GBDT梯度提升树股票价格时间序列预测
时序预测 | Python实现GBDT梯度提升树股票价格时间序列预测原创 2023-01-06 18:37:10 · 921 阅读 · 0 评论 -
时序预测 | Python实现GBDT梯度提升树时间序列预测
时序预测 | Python实现GBDT梯度提升树时间序列预测原创 2023-01-06 16:55:30 · 1202 阅读 · 0 评论 -
机器学习 | Python实现GBDT梯度提升树模型设计
机器学习 | Python实现GBDT梯度提升树模型设计原创 2023-01-06 16:33:42 · 918 阅读 · 1 评论 -
回归预测 | MATLAB实现XGBoost极限梯度提升树多输入单输出(预测新数据,多指标评价)
回归预测 | MATLAB实现XGBoost极限梯度提升树多输入单输出(预测新数据,多指标评价)原创 2022-11-29 23:54:53 · 3918 阅读 · 0 评论 -
集成学习 | MATLAB集成学习算法比较
集成学习 | MATLAB集成学习算法比较原创 2022-08-05 08:40:48 · 1498 阅读 · 0 评论 -
分类预测 | MATLAB实现RUSBoost自适应提升随机欠采样的不平衡数据分类预测
分类预测 | MATLAB实现RUSBoost自适应提升随机欠采样的不平衡数据分类预测原创 2022-06-04 21:48:24 · 1840 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之特征点检测
时序预测 | MATLAB实现时间序列回归之特征点检测目录时序预测 | MATLAB实现时间序列回归之特征点检测基本介绍特征点概念删除性诊断程序设计参考资料致谢基本介绍本文主要工作是检测时间序列数据中的有影响的观测值,并检验它们对多元线性回归模型的影响。在考虑影响 OLS 估计的经验限制时,Belsley 等人建议首先解决共线性问题。 下一步是寻找有影响力的观察结果,它们的存在,无论是单独的还是成组的,都会对回归结果产生可测量的影响。将“特征点”的基本度量概念与“异常值”的更主观的概念区分开来原创 2021-09-09 23:13:09 · 1161 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之似然检验
时序预测 | MATLAB实现时间序列回归之似然检验目录时序预测 | MATLAB实现时间序列回归之似然检验基本介绍程序设计学习小结参考资料基本介绍使用 CNLM 假设制定的 t 和 F 检验版本可以在创新分布偏离规范的各种情况下提供可靠的推论。相比之下,基于可能性的测试需要一个正式的创新模型才能运行。数据似然度通常是在具有固定方差的独立且正态分布的创新假设下计算的。可以调整 DGP 的这个基础模型以适应不同的创新模式,包括极端事件的更高概率,但仍然存在强分布假设。与 F 统计量一样,数据似原创 2022-01-15 14:09:44 · 877 阅读 · 0 评论 -
回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数优化
回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数优化目录回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数优化基本介绍方法应用参考资料致谢基本介绍Matlab实现GBDT(梯度提升树)基于内置函数fitrensemble实现预测目标。用 fitrensemble 自动优化超参数具有一定挑战性。方法应用可以找到通过使用自动超参数优化来最小化五倍交叉验证损失的超参数。Mdl = fitrensemble([Horsepower,W原创 2022-01-04 11:12:39 · 4274 阅读 · 0 评论 -
回归预测 | MATLAB实现GBDT(梯度提升树)交叉验证
回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble交叉验证目录回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble交叉验证目录方法应用KFold和kfoldLossOptimizeHyperparameters参考资料目录创建预测性能的增强回归树集合的一种方法是使用交叉验证来调整决策树的复杂度级别。 在寻找最佳复杂度水平的同时,调整学习率以最小化学习周期数。使用交叉验证选项(‘KFold’ )和 kfoldLoss 函数手动查找最佳参数,或使用原创 2022-01-04 11:48:18 · 3053 阅读 · 4 评论 -
回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数设定
回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数设定目录回归预测 | MATLAB实现GBDT(梯度提升树)fitrensemble参数设定基本介绍方法应用训练回归集成加速训练估计泛化误差程序设计参考资料致谢基本介绍Matlab实现梯度提升树基于内置函数fitrensemble可以实现预测目标。方法应用训练回归集成创建一个回归集成,在给定气缸数、气缸排量、马力和重量的情况下预测汽车的燃油经济性。 然后,使用较少的预测器训练另一个集成。 比较集合的样本内预测精原创 2021-12-25 18:06:49 · 4090 阅读 · 0 评论 -
特征选择 | MATLAB实现RF(随机森林)特征选择
特征选择 | MATLAB实现RF(随机森林)特征选择目录特征选择 | MATLAB实现RF(随机森林)特征选择基本介绍模型设定参考资料基本介绍随机森林能够度量每个特征的重要性,我们可以依据这个重要性指标进而选择最重要的特征。一般情况下,数据集的特征成百上千,因此有必要从中选取对结果影响较大的特征来进行进一步建模,相关的方法有:主成分分析、lasso等,这里我们介绍的是通过随机森林来进行筛选。用随机森林进行特征重要性评估的思想比较简单,主要是看每个特征在随机森林中的每棵树上做了多大的贡献,然后原创 2022-04-28 11:21:29 · 5173 阅读 · 0 评论 -
分类预测 | MATLAB实现RF(随机森林)分类预测
分类预测 | MATLAB实现RF(随机森林)分类预测目录分类预测 | MATLAB实现RF(随机森林)分类预测基本介绍算法描述程序设计参考资料基本介绍随机森林(Random Forest,RF)算法由Leo Breiman和Adele Cutler提出,可以用来解决分类或回归等问题。基本单元:决策树思想:集成学习(Bagging)优点:具有极好的准确率;能够有效地运行在大数据集上;能够处理具有高维特征的输入样本,而且不需要降维;能够评估各个特征在分类问题上的重要性;抗过拟合能力比较强;对于原创 2022-04-27 11:47:33 · 4545 阅读 · 3 评论 -
回归预测 | MATLAB实现RF(随机森林)多输入单输出
回归预测 | MATLAB实现RF(随机森林)多输入单输出目录回归预测 | MATLAB实现RF(随机森林)多输入单输出基本介绍原理介绍模型原理函数用法程序设计参考资料基本介绍将随机森林回归原理应用到了预测领域,构建了基于随机森林的预测模型,以及预测结果的评价,测试数据对算法进行验证,结果表明,将随机森林算法运用到预测领域可以为相关问题提供参考价值。运行环境Matlab2018b;机器学习任务,随机森林回归。随机森林函数:fitrensemble。原理介绍模型原理随机森林是一种有原创 2021-12-24 11:56:58 · 4048 阅读 · 0 评论