复变函数:复数基本知识、欧拉公式、复变函数的导数、解析函数

复变函数 专栏收录该内容
3 篇文章 3 订阅

实变函数(高等数学)主要内容:

  • 微积分(一元、二元、多元)
  • 级数理论
  • 常微分方程

复变函数:

  • 研究对象:自变量为复数的函数
  • 主要任务:研究复变数之间的相互依赖关系,具体地就是复数域上的微积分
  • 主要内容:复数与复变函数、解析函数、复变函数的积分、级数、留数、保形映射、积分变换等。

一、复数基本知识

1.1 复数基本概念

对任意两实数x, y,称 z = x + i y z=x+iy z=x+iy z = x + y i z=x+yi z=x+yi为复数,其中 i 2 = − 1 i^2=-1 i2=1,i称为虚部

复数z的实部Re(z)=x,虚部Im(z)=y

复数的模: ∣ z ∣ = x 2 + y 2 ≥ 0 |z|=\sqrt{x^2+y^2}\ge0 z=x2+y2 0

复数相等: z 1 = z 2    ⟺    x 1 = x 2 , y 1 = y 2 z_1=z_2 \iff x_1=x_2,y_1=y_2 z1=z2x1=x2,y1=y2,其中 z 1 = x 1 + i y 1 , z 2 = x 2 + i y 2 z_1=x_1+iy_1,z_2=x_2+iy_2 z1=x1+iy1,z2=x2+iy2

z = 0    ⟺    R e ( z ) = I m ( z ) = 0 z=0\iff Re(z)=Im(z)=0 z=0Re(z)=Im(z)=0

一般两个复数不能比较大小。

1.2 共轭复数

z = x + i y z=x+iy z=x+iy,称 z ‾ = x − i y \overline{z}=x-iy z=xiy为z的共轭复数。

1.3 几何表示

1.3.1 可以用点来表示:

z = x + i y    ⟺    z=x+iy \iff z=x+iy复平面上的点 P ( x , y ) P(x,y) P(x,y)
复平面上横坐标轴称为实轴,纵坐标轴称为虚轴。

1.3.2 可以用向量来表示:

z = x + i y    ⟺    P ( x , y )    ⟺    O P → = { x , y } z=x+iy\iff P(x,y)\iff \overrightarrow{OP}=\{x,y\} z=x+iyP(x,y)OP ={x,y}
可以用向量 O P → \overrightarrow{OP} OP 来表示 z = x + i y z=x+iy z=x+iy
复数的模:向量的长度 ∣ z ∣ = ∣ O P → ∣ = x 2 + y 2 |z|=|\overrightarrow{OP}|=\sqrt{x^2+y^2} z=OP =x2+y2
复数的幅角:向量与正实轴之间的夹角 θ = A r g z = ( O P → , x ) \theta=Arg_z=(\overrightarrow{OP},x) θ=Argz=(OP ,x)
t a n ( A r g z ) = y x tan(Argz)={y\over x} tan(Argz)=xy
当z=0时,幅角无意义
幅角是无穷多的: A r g z = θ = θ 0 + 2 k π Arg_z=\theta=\theta_0+2k\pi Argz=θ=θ0+2kπ
满足 − π < θ 0 < π -\pi<\theta_0<\pi π<θ0<π θ 0 \theta_0 θ0称为幅角 A r g z Arg_z Argz的主值,记作: θ 0 = A r g z \theta_0=Arg_z θ0=Argz

1.3.3 可以用三角来表示:

用复数的模与幅角来表示非零复数z
{ x = r c o s θ y = r s i n θ \begin{cases}x=rcos\theta\\y=rsin\theta\end{cases} {x=rcosθy=rsinθ得:
z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ)

1.3.4 用指数表示

由欧拉公式: e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ可得非零复数z的指数表达式:
z = r e i θ z=re^{i\theta} z=reiθ

1.2 复数的乘幂与方根

1.2.1 复数的乘积与熵

利用复数的三角表示,我们可以更简单的表示复数的乘法与除法:
定理:设 z 1 , z 2 z_1,z_2 z1,z2是两个非零复数:
z 1 = ∣ z 1 ∣ ( c o s A r g z 1 + i s i n A r g z 1 ) = ∣ z 1 ∣ e i ( A r g z 1 ) z_1=|z_1|(cosArg_{z_1}+isinArg_{z_1})=|z_1|e^{i(Argz_1)} z1=z1(cosArgz1+isinArgz1)=z1ei(Argz1)
z 2 = ∣ z 2 ∣ ( c o s A r g z 2 + i s i n A r g z 2 ) = ∣ z 2 ∣ e i ( A r g z 2 ) z_2=|z_2|(cosArg_{z_2}+isinArg_{z_2})=|z_2|e^{i(Argz_2)} z2=z2(cosArgz2+isinArgz2)=z2ei(Argz2)

则:
∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ , A r g ( z 1 z 2 ) = A r g ( z 1 ) + A r g ( z 2 ) |z_1z_2|=|z_1||z_2|,Arg(z_1z_2)=Arg(z_1)+Arg(z_2) z1z2=z1z2,Arg(z1z2)=Arg(z1)+Arg(z2)
∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ ( z 2 ≠ 0 ) , A r g ( z 1 z 2 ) = A r g ( z 1 ) − A r g ( z 2 ) |{z_1\over z_2}|={|z_1|\over|z_2|}(z_2\ne0),Arg({z_1\over z_2)}=Arg(z_1)-Arg(z_2) z2z1=z2z1(z2=0),Arg(z2)z1=Arg(z1)Arg(z2)

乘法的几何意义:将复数 z 1 z_1 z1按逆时针方向旋转一个角度Arg(z_2),再将其伸缩到|z_2|倍。

1.2.2 复数的乘幂

n个相同复数z的乘积称为z的n次幂: z n z^n zn
z n = z z . . . z = r n e i n θ = r n ( c o s n θ + i s i n n θ ) z^n=zz...z=r^ne^{in\theta}=r^n(cosn\theta+isinn\theta) zn=zz...z=rneinθ=rn(cosnθ+isinnθ)
特别地:当 ∣ z ∣ = r = 1 |z|=r=1 z=r=1时, z n = ( c o s n θ + i s i n n θ ) z^n=(cosn\theta+isinn\theta) zn=(cosnθ+isinnθ),此时有:
( c o s θ + i s i n θ ) n = c o s n θ + i s i n n θ (cos\theta+isin\theta)^n=cosn\theta+isinn\theta (cosθ+isinθ)n=cosnθ+isinnθ
这个公式称为De Moivre公式

z − n = 1 z n z^{-n}={1\over z^n} zn=zn1,则:
z − n = r − n ( c o s ( − n θ ) + i s i n ( − n θ ) ) = r − n e − i n θ z^{-n}=r^{-n}(cos(-n\theta)+isin(-n\theta))=r^{-n}e^{-in\theta} zn=rn(cos(nθ)+isin(nθ))=rneinθ

1.2.3 复数的方根

z = r e i θ z=re^{i\theta} z=reiθ为已知复数,n为正整数,则称满足方程 w n = z w^n=z wn=z的所有w值为z的n次方根,记为 w = z n w=\sqrt[n]{z} w=nz
在这里插入图片描述
在这里插入图片描述

https://wenku.baidu.com/view/95266a772e60ddccda38376baf1ffc4ffe47e29a.html

二、欧拉公式:

i = − 1 i=\sqrt{-1} i=1 ,欧拉公式为:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx

欧拉公式的推导用到了泰勒展开,至于 e i x e^{ix} eix为什么可以泰勒展开需要证明,这里忽略:

e i x = 1 + i x + ( i x ) 2 2 ! + ( i x ) 3 3 + ( i x ) 4 4 ! + ( i x ) 5 5 ! + ( i x ) 6 6 ! + . . . e^{ix}=1+ix+{(ix)^2\over 2!}+{(ix)^3\over 3}+{(ix)^4\over 4!}+{(ix)^5\over 5!}+{(ix)^6\over 6!}+... eix=1+ix+2!(ix)2+3(ix)3+4!(ix)4+5!(ix)5+6!(ix)6+...
= 1 + i x − x 2 2 ! − i x 3 3 ! + x 4 4 ! + i x 5 5 ! − x 6 6 ! \quad=1+ix-{x^2\over2!}-{ix^3\over3!}+{x^4\over4!}+{ix^5\over5!}-{x^6\over6!} =1+ix2!x23!ix3+4!x4+5!ix56!x6
= ( 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . ) + i ( x − x 3 3 ! + x 5 5 ! − . . . ) \quad=(1-{x^2\over2!}+{x^4\over4!}-{x^6\over6!}+...)+i(x-{x^3\over3!}+{x^5\over5!}-...) =(12!x2+4!x46!x6+...)+i(x3!x3+5!x5...)
= c o s x + i s i n x \quad=cosx+isinx =cosx+isinx

欧拉公式的一个变形:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx

e − i x = c o s x − i s i n x e^{-ix}=cosx-isinx eix=cosxisinx

相加相减可以得到:

s i n x = e i x − e − i x 2 i sinx={e^{ix}-e{-ix}\over 2i} sinx=2ieixeix

c o s x = e i x + e − i x 2 cosx={e^{ix}+e^{-ix}\over2} cosx=2eix+eix

三、复变函数的导数

3.1 导数的定义

在这里插入图片描述
在这里插入图片描述

3.2 求导公式与法则(实函数中求导法则的推广)

  1. 常数的导数 c ′ = ( a + i b ) ′ = 0 c'=(a+ib)'=0 c=(a+ib)=0
  2. ( z n ) ′ = n z n − 1 (z^n)'=nz^{n-1} (zn)=nzn1(n是自然数)
  3. 设函数 f ( z ) , g ( z ) f(z),g(z) f(z),g(z)均可导,则:
    [ f ( z ) ± g ( z ) ] ′ = f ′ ( z ) ± g ′ ( z ) [f(z)\pm g(z)]'=f'(z)\pm g'(z) [f(z)±g(z)]=f(z)±g(z)
    [ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) + f ( z ) g ′ ( z ) [f(z)g(z)]'=f'(z)g(z)+f(z)g'(z) [f(z)g(z)]=f(z)g(z)+f(z)g(z)
    [ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) − f ( z ) g ′ ( z ) g 2 ( z ) ( g ( z ) ≠ 0 ) [{f(z)\over g(z)}]'={f'(z)g(z)-f(z)g'(z)\over g^2(z)}\quad(g(z)\ne0) [g(z)f(z)]=g2(z)f(z)g(z)f(z)g(z)(g(z)=0)
  4. 复合函数的导数: f [ g ( z ) ] ′ = f ′ ( g ( z ) ) g ′ ( z ) f[g(z)]'=f'(g(z))g'(z) f[g(z)]=f(g(z))g(z)
  5. 反函数的导数: f ′ ( z ) = 1 ϕ ′ ( w ) f'(z)={1\over \phi'(w)} f(z)=ϕ(w)1,其中: w = f ( z ) w=f(z) w=f(z),与 z = ϕ ( w ) z=\phi(w) z=ϕ(w)互为单值的反函数,且 ϕ ′ ( w ) ≠ 0 \phi'(w)\ne0 ϕ(w)=0

在这里插入图片描述
在这里插入图片描述
注意:

  1. 复变函数在一点处可导,要比实函数在一点处可导要求高得多,也复杂得多,这是因为 △ z → 0 \triangle z\to0 z0是在平面区域上以任意方式趋于零的缘故。
  2. 在高等数学中要举出一个处处连续,但处处不可导的例题是狠苦难的,但在复变函数中,却轻而易举

3.3 可导与连续

在这里插入图片描述

四、解析函数

4.1 定义

在这里插入图片描述
在这里插入图片描述

4.2 定理

在这里插入图片描述
在这里插入图片描述

4.3 解析函数的充要条件

在这里插入图片描述

https://wenku.baidu.com/view/532c39681eb91a37f1115c77.html
复变函数基本初等函数

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值