UVa:11003 Boxes

本文通过动态规划算法解决了一个关于箱子堆叠的问题。详细解释了如何通过最小化每一步的承载重量来最大化堆叠的箱子数量。利用二维数组dp记录从第一个到第i个箱子中选择j个箱子时的最小重量,同时使用last数组跟踪每一层选择的箱子编号,确保了箱子的正确堆叠顺序。最后,通过遍历dp数组找到最大定义状态的j作为最终答案。

跟10154的差不多。

有两点不同。1是可承重不包括自重,2是编号小的不能放在大的上面。

 

果然看题解是不好的行为,做这道题的时候又被卡住了,其实刚做了10154没几天。

一直在最小承受重量这里犯糊涂。

 

dp[i][j] 表示使用前i个盒子组成一堆共有j个盒子的最小重量。

为什么要最小呢,只有最小才能保证可以堆成盒子的数目最多。这里是相通的。

dp[i][j]=min(dp[i-1][j],dp[i-1][j-1]+p[i].a)

意思是当这堆盒子一共有j个的时候,不包含第i个盒子和包含第i个盒子,两种情况哪种更轻,并选择更轻的情况。

 

看上图。

行列皆由0开始,INF定义为正无穷大,表示未定义状态。

出于习惯我将【1 2】编号为1,【6 8】编号为2...【19 5 】编号为5

当j=1时,dp[1...5][1]表示从前五个盒子中选一个成为一堆的最小重量。

                  显然编号为1的【1 2】最合适。在dp[1][1]做出了选择编号1的盒子的决策,开一个数组last[i][j]表示dp[i][j]对应的一堆盒子最下面盒子的编号,那么这里last[1][1]=1。在dp[2..5][1]由于没有比只选1更好的决策了,所以都作出不选择的决策,也就是保持选择1的决策。

当j=2时,dp[1...5][2]表示从前五个盒子中选两个成为一堆的最小重量。

                 显然只有一个盒子是组不成有两个盒子的一堆的,所以为INF。

                dp[2][2]时首先看编号2的盒子是否能放在之前的组成的一堆盒子下面。这里之前的状态指编号2的盒子没有参与组成,一堆盒子数目为j-1的盒子,也就是dp[1][1]。如果last[1][1]>2而且编号2的盒子可以承受dp[1][1]的重量,这时候编号2的盒子已经具备了放在dp[1][1]下面的条件,现在再看到底要不要选择编号2的盒子。取决于min(dp[i-1][j-1]+p[i].a,dp[i-1][j]),这个时候dp[i-1][j]也就是dp[1][2]是未定义状态,也就是说你只有把编号2的盒子放到dp[1][1]下面这唯一一种选择,因为你不放它,实际上dp[2][2]就只有1个盒子,必须再选择一个盒子才符合j=2的定义。

                dp[2][3]时跟之前dp[2][2]相同,显然编号3的盒子也是具备放在下面的条件的。再看要不要选用编号3的盒子,看min(dp[i-1][j-1]+p[i].a,dp[i-1][j]),显然dp[1][2]+p[3].a=6要比dp[1][2]=7要小,所以选用编号3的盒子。翻译成中文是什么意思呢,就是说dp[2][1]放在编号3的盒子上面比dp[1][1]放在编号2的盒子上面要轻,所以dp[2][3]选择了更轻的情况。

                在这里我们可以体会一下动规局部最优解组合成全局最优解的意思,dp[1][1],dp[2][1]以及dp[2][2]都是它们当时自身对应状态的最优解,现在到了dp[2][3],又由它们组合决策新的最优解。其实这些东西都是一层一层淘汰掉非优解,递推出来的,这样一步一步就可以得到最终结果。

j=3,4,5 类似。当然这里j最大取值是5,也就是盒子总数,实际上最终答案不一定是盒子总数。可能j=X某个时候,dp[i][X]是未定义状态,这时候根本就没有盒子可放了。

所以对于dp[N][j]搜索得到最大有定义状态的j就是答案。

 

 

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define INF 0x7f7f7f7f
using namespace std;
struct Box
{
    int a,A;
};
int dp[1005][1005];
int last[1005][1005];
Box p[1005];
int main()
{
    int n;
    while(scanf("%d",&n)&&n)
    {
        memset(dp,INF,sizeof(dp));
        memset(last,-1,sizeof(last));
        memset(p,-1,sizeof(p));
        for(int i=n; i>0; --i) scanf("%d%d",&p[i].a,&p[i].A);
        int ans=0;
        for(int i=0; i<=n; ++i)
            dp[i][0]=0;
        for(int i=1; i<=n; ++i)
            for(int j=1; j<=i; ++j)
            {
                if(p[i].A>=dp[i-1][j-1]&&i>last[i-1][j-1])
                {
                    if(dp[i-1][j-1]+p[i].a<dp[i-1][j])
                    {
                        dp[i][j]=dp[i-1][j-1]+p[i].a;
                        last[i][j]=i;
                    }
                    else
                    {
                        dp[i][j]=dp[i-1][j];
                        last[i][j]=last[i-1][j];
                    }
                }
                else
                {
                    dp[i][j]=dp[i-1][j];
                    last[i][j]=last[i-1][j];
                }
                if(dp[i][j]!=INF)
                    ans=max(ans,j);
            }
        printf("%d\n",ans);
    }
    return 0;
}


 

在充满仪式感的生活里,一款能传递心意的小工具总能带来意外惊喜。这款基于Java开发的满屏飘字弹幕工具,正是为热爱生活、乐于分享的你而来——它以简洁优雅的视觉效果,将治愈系文字化作灵动弹幕,在屏幕上缓缓流淌,既可以作为送给心仪之人的浪漫彩蛋,也能成为日常自娱自乐、舒缓心情的小确幸。 作为程序员献给crush的心意之作,工具的设计藏满了细节巧思。开发者基于Swing框架构建图形界面,实现了无边框全屏显示效果,搭配毛玻璃质感的弹幕窗口与圆润边角设计,让文字呈现既柔和又不突兀。弹幕内容精选了30条治愈系文案,从“秋天的风很温柔”到“你值得所有温柔”,涵盖生活感悟、自我关怀、浪漫告白等多个维度,每一条都能传递温暖力量;同时支持自定义修改文案库,你可以替换成专属情话、纪念文字或趣味梗,让弹幕更具个性化。 在视觉体验上,工具采用柔和色调生成算法,每一条弹幕都拥有独特的清新配色,搭配半透明渐变效果与平滑的移动动画,既不会遮挡屏幕内容,又能营造出灵动治愈的氛围。开发者还优化了弹幕的生成逻辑,支持自定义窗口大小、移动速度、生成间隔等参数,最多可同时显示60条弹幕,且不会造成电脑卡顿;按下任意按键即可快速关闭程序,操作便捷无负担。 对于Java学习者而言,这款工具更是一份优质的实战参考。源码完整展示了Swing图形界面开发、定时器调度、动画绘制、颜色算法等核心技术,注释清晰、结构简洁,哪怕是初学者也能轻松理解。开发者在AI辅助的基础上,反复调试优化细节,解决了透明度控制、弹幕碰撞、资源占用等多个问题,这份“踩坑实录”也为同类项目开发提供了宝贵经验。 无论是想给喜欢的人制造浪漫惊喜,用满屏文字传递心意;还是想在工作间隙用治愈文案舒缓压力,或是作为Java学习的实战案例参考,这款满屏飘字弹幕工具都能满足你的需求。它没有复杂的操作流程,无需额外配置环境,下载即可运行,用最纯粹的设计传递最真挚的
内容概要:本文介绍了一种基于CEEMDAN-GRU的中短期天气预测模型,通过将完全集合经验模态分解自适应噪声(CEEMDAN)与门控循环单元(GRU)相结合,实现对非线性、非平稳气象时间序列的高效建模与精准预测。CEEMDAN用于将原始气象数据(如温度、风速等)自适应分解为多个本征模态函数(IMFs),有效提取多尺度特征并降低噪声干扰;随后,每个IMF分量分别输入独立的GRU网络进行时序建模,最后将各分量预测结果重构为最终输出。该方法显著提升了预测精度、鲁棒性与泛化能力,同时兼顾计算效率和模型可解释性,适用于复杂气象环境下的智能预测任务。文中还概述了模型架构、关键技术挑战及解决方案,并提供了MATLAB实现的部分代码示例。; 适合人群:具备一定信号处理或机器学习基础,从事气象预测、时间序列分析、人工智能应用研究的科研人员与工程师,尤其是关注数据驱动型预测模型开发的技术人员。; 使用场景及目标:①应用于中短期天气要素(如气温、降水、风速)的高精度预测;②解决传统气象模型在非线性、非平稳数据建模中的局限性;③探索CEEMDAN与深度学习融合在多尺度时间序列预测中的实际效能;④为防灾减灾、智慧气象、能源调度等领域提供可靠预测技术支持。; 阅读建议:此资源侧重于方法原理与系统架构设计,建议结合MATLAB代码实践操作,深入理解CEEMDAN分解过程与GRU建模细节,并可通过调整超参数、优化融合策略进一步提升模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值