高清还原破损视频 BMVC 2019
每个被破损的视频,经过AI还原之后,仿佛从来没有被破坏过一样,完整清晰。
可学习的门控时移模块,Learnable Gated Temporal Shift Module,LGTSM
整体的模型则是由U-net类生成器和TSMGAN鉴别器构成,LGTSM模块所处的位置就是生成器内,除此之外生成器还包括11个卷积层。
基于YouTube视频制作的FaceForensics和FVI数据集,总共视频数量超过16000个。
在两个数据集上,LGTSM和目前成绩最好的3DGated非常接近,但参数的数量却只有前者的三分之一。
https://www.qbitai.com/2019/07/5449.html
已有patch-based方法,能够处理好规则形状的空洞,但处理不好不规则形状的空洞。
设计了一个基于3D Gated convolution层的生成器(13层网络),结合相邻帧信息,3D Gated convolution可以进行更精确地修补不规则的masked图像区域,并且不影响到原本就是好的unmasked图像像素。
已有的image inpainting方法,处理视频的空洞会产生时域不一致的问题。
设计了一个基于Temporal PatchGAN的鉴别器,惩罚高频的spatial-temporal特征,提升时域的一致性。
利用生成器来修复出尽可能真实的图片,利用鉴别器来识别出修复后图片的真假。
代码:
2019-ICCV-台湾大学-(3DGated)Free-form Video Inpainting with