2019-ICCV-台湾大学-Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN

该博客介绍了使用3D Gated卷积和Temporal PatchGAN技术在自由形态视频修复中的应用,通过LGTSM模块和U-net类生成器,实现了对不规则形状空洞的精准修复,提升了视频时域一致性。台湾大学的研究在FaceForensics和FVI数据集上表现出色,代码和相关资源也在文中给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高清还原破损视频  BMVC 2019

每个被破损的视频,经过AI还原之后,仿佛从来没有被破坏过一样,完整清晰。

可学习的门控时移模块,Learnable Gated Temporal Shift Module,LGTSM

整体的模型则是由U-net类生成器和TSMGAN鉴别器构成,LGTSM模块所处的位置就是生成器内,除此之外生成器还包括11个卷积层。

基于YouTube视频制作的FaceForensics和FVI数据集,总共视频数量超过16000个。

在两个数据集上,LGTSM和目前成绩最好的3DGated非常接近,但参数的数量却只有前者的三分之一。
https://www.qbitai.com/2019/07/5449.html

已有patch-based方法,能够处理好规则形状的空洞,但处理不好不规则形状的空洞。
设计了一个基于3D Gated convolution层的生成器(13层网络),结合相邻帧信息,3D Gated convolution可以进行更精确地修补不规则的masked图像区域,并且不影响到原本就是好的unmasked图像像素。


已有的image inpainting方法,处理视频的空洞会产生时域不一致的问题。
设计了一个基于Temporal PatchGAN的鉴别器,惩罚高频的spatial-temporal特征,提升时域的一致性。

利用生成器来修复出尽可能真实的图片,利用鉴别器来识别出修复后图片的真假。

代码:

2019-ICCV-台湾大学-(3DGated)Free-form Video Inpainting with

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值