kl195375
码龄8年
关注
提问 私信
  • 博客:65,463
    社区:989
    问答:2,190
    68,642
    总访问量
  • 36
    原创
  • 1,786,469
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2016-08-02
博客简介:

kl195375的博客

查看详细资料
个人成就
  • 获得16次点赞
  • 内容获得1次评论
  • 获得58次收藏
创作历程
  • 4篇
    2021年
  • 10篇
    2020年
  • 30篇
    2019年
成就勋章
TA的专栏
  • 计算机体系结构
    3篇
  • 特征选择
    3篇
  • 深度学习
    2篇
  • 机器学习
    3篇
  • 协议
    2篇
  • 图片处理
  • 数据结构
  • IDS
    2篇
  • 论文流程及技术
    7篇
  • 理论及专业名词解释
    23篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

进程与线程

进程:由程序,数据集,进程控制块组合而成。是程序在数据集上的一次动态的执行。程序:决定了进程有什么样功能,并如何实现这些功能。数据集:进程执行时所需要的资源。进程控制块:系统识别进程唯一的标识,记录和恢复进程的状态。进程是程序的一个实体,是系统资源分配与调度的基本单位,是操作系统结构的基础。进程切换内核有能力将在cpu上运行的进程进行挂起,在内存中开辟空间用于储存挂起进程的状态及所需要的资源。 并恢复之前被挂起的进程。进程切换极耗费资源。线程是进程的一个实体,由进程ID,程序计数器,寄存
原创
发布博客 2021.04.11 ·
126 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

冯诺依曼计算机体系

冯诺依曼计算机体系1.存储器(指的是内存与外存)操作系统内核可以直接其中内存被分为用户空间与内核空间。
原创
发布博客 2021.04.11 ·
531 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

同步,异步,阻塞,非阻塞

要分层次进行分析“阻塞”与”非阻塞“1.进程间通信层面《操作系统概念(第九版)》中说明:进程间通信是通过调用send()和receive()原语实现的。调用方案有多种,信息的通过是阻塞与非阻塞二者之一。同时在此层面同步和异步与阻塞和非阻塞意义相同。阻塞接口:会等待信息返回,且等待时会导致进程被挂起。非阻塞接口:会立刻返回调用,使进程能够正常运行,稍后会返回结果通知。阻塞发送:发送信息被阻塞,直到信息被接收。非阻塞发送:信息被发送后可直接进行其他操作。阻塞接收: 调用receive()后被阻
原创
发布博客 2021.04.09 ·
164 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python cv2

import cv2img=cv2.imread(path) #从相应地址读取图片cv2.imshow(img)#显示相应图片cv2.resize(img,(size,size))#重置图片大小cv2.WaitKey(0)#等待键盘相应,其他数字为等待时间毫秒为单位。cv2.destroyAllWindows() #主要作用是清除所有show出来的图像...
原创
发布博客 2021.03.10 ·
85 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv1算法的问题

发布问题 2021.03.02 ·
1 回答

PCA(Principal components analysis)主成分分析的理解

PCA可以用于数据的降维,也可以用于特征的选择。降维后所有特征都是新的特征,无法明确其具体的意义。设C为原样本集,P为基。新的数据为T。C类似于原有坐标点,P是坐标系的基,通过矩阵乘法可以获得新的坐标点T。通过这种方法获得的T便是降维后的数据集。在这里我们需要获得P。两数据之间不存在相互关系时,方差为0.可以利用这个关系建立协方差矩阵新数据的协方差为M:为T的协方差矩阵,格式如下:原数据的协方差为D:M与D之间的关系为:优化协方差M也就是令协方差矩阵对角化:优化方式是利用拉格朗日
原创
发布博客 2020.11.19 ·
284 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

IG (information gain)

IG(t)=H( C )-H(C/T)特征T的信息增益等于:整体C的信息量减去已知特征t时的信息量。信息量通过熵来表达。H( C )是整体的信息熵Ci为类别H(C/T)是已知特征T时的信息量,一般只存在两种状态,有特征T为t,没有特征T,为*t。所以...
原创
发布博客 2020.11.18 ·
380 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

K-NN

k临近算法:核心:计算样本之间的距离,并将相近的k个样本排列出来。分类到临近样本数量的类别。
原创
发布博客 2020.11.17 ·
111 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习过拟合相关问题

答:

有可能吧 但你的训练精度并不是很高。还有你用的什么分类器啊至少你说一下啊,哪种神经网络

回答问题 2020.10.24

深度学习有关dropout层的问题

答:

这个是需要自己去添加并调节drop率

回答问题 2020.10.24

随机森林(random forest)

1.类似于决策树集合,从集合中选择效果最佳的分类模型。2.属性建立:从M个属性中选取m个属性,m<<M远小于。利用规则确认节点属性,如信息增益等。分裂属性直至无属性可选为止。3.训练模型:从总样本中放回式选取n个样本训练模型4.选择模型:选择最佳的分类效果的模型。...
原创
发布博客 2020.10.22 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

UDP用户数据报协议(User Datagram Protocol)

与TCP同样是处于传输层的传输协议,位于IP协议上层。提供不可靠,不面向连接的传输。传输完整的数据报。在丢失数据时不会进行重发。UDP协议提供多连接。多用于不同计算机之间连接。UDP协议基本上是IP协议与上层协议的接口应用层访问UDP协议,并通过IP协议传输数据,IP协议的数据部分即UDP协议的数据报。IP协议头部表明了源主机与目标主机的地址,UDP协议头部表明源端口与目标端口。UDP协议头部为四部分:源端口,目标端口,数据报长度,检验和。UDP协议与TCP协议使用端口号为不同应用保留不同的数
原创
发布博客 2020.10.22 ·
905 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何提高算法的评分如:召回率、精确率

答:

看你的特征了,对特征做一下选择可能会效果好一点,要不就根据特征给随机森林加一定的阈值,但具体修改还是要看你使用的特征是什么

回答问题 2020.10.22

请各位大佬解释下下面这个B树删除的问题,最好有详细步骤。

答:

图片说明
图片说明
图片说明

图片说明

第二问方法我不确定对不对

回答问题 2020.10.21

PAT 1024 科学计数法 (20分) 不太清楚我的代码错在了哪里

答:

我测试了一下你这个程序如果输入是+1.23400E+01这种的都有问题啊
num=str(int(float(num[1:e_pos])*zhi))+zero 你不能使用int

回答问题 2020.10.21

TCP协议(Transmission Control Protocol)

TCP协议是传输层常用传输协议。(Transmission Control Protocol)1.可靠性2.面向连接3.基于字节流4.在网络状态不佳时会降低重传给系统带来的宽带开销5.通信连接维护是面向连接的两个端,忽视中间网段与节点。为了满足这些特点,TCP协议做出了如下规定:1.数据分片:发送端会将数据分片,并在接受端重组。TCP控制分片数据的大小以及数据分片和重组。2.到达确认:接受端在接受数据分片后会给发送方发送确认。使用累积确认,以减小宽带消耗3.超时重发:发送端在发送数据分片时
原创
发布博客 2020.10.20 ·
1151 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

NIDS and HIDS

NIDS: network intrusion detection system基于监控传入流量的检测系统HIDS: host-based intrusion system基于监控系统情况的检测系统
原创
发布博客 2020.10.15 ·
396 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Fuzzy Theory

模糊理论 (Fuzzy Theory) 是指使用了模糊集合的基本概念或使用连续隶属度函数的理论。可分为:模糊数学,模糊系统,不确定性和信息,模糊决策,模糊逻辑与人工智能。模糊集合用来表达模糊性概念的集合。1965年美国学者扎德创建了一种描述模糊现象的方法–模糊集合论jiang...
原创
发布博客 2020.10.15 ·
770 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

intrusion detection system(IDS) anomaly and misue

anomaly(异常检测):将正常行为作为标签,所有不同于正常行为的其他行为被标为攻击行为。misue(误用检测):将已知的恶意行为作为标签,其他行为被标为正常
原创
发布博客 2020.10.15 ·
268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CNN(convolutional neural network)

原创
发布博客 2020.09.23 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多