力扣1504. 统计全 1 子矩形

在这里插入图片描述

            题解:动态规划,记录每个点左边连续的1的个数(包含自己)。dp[i][j] = cnt;
            对每个点所在行以该点为矩形右下角的矩形数量就为dp[i][j]
    		比如上面的mat[2][1]对应的就为 [1]、[1,1]即sum = dp[2][1] = 2;
            向上拓展 (每层能拓展的矩形为min(now,min(before))),意思就是dp[1][1] = 2那么能拓展的就是[1,		和[1,1
            																					1]        1,1]。
            可以理解为我们从底向上试探,找出可以拓展的矩形,而对当前拓展的每一层来看,它所有下面的层都是它的基石,能拓展出的矩形就为min(now,min(before))(矩形长度不能超过基石的最小值)。

            代码:
class Solution {
public:
    int numSubmat(vector<vector<int>>& mat) {
        int row = mat.size();
        int column = mat[0].size();
        vector<vector<int> >dp(row,vector<int>(column));
        for (int i = 0;i < row;i++) {
            int cnt = 0;
            for (int j = 0;j < column;j++) {
                if (mat[i][j] == 1) {
                    cnt++;
                }
                else {
                    cnt = 0;
                }
                dp[i][j] = cnt;
            }
        }
        int res = 0;
        for (int i = 0;i < row;i++) {
            for (int j = 0;j < column;j++) {
                int sum = dp[i][j],m = dp[i][j];
                if (sum  > 0) {
                    for (int k = i - 1;k >= 0;k--) {
                        m = min(m,dp[k][j]);
                        sum += m;
                    }
                    res += sum;
                }
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值