sklearn
_威行天下_
世界未亡 死不投降
展开
-
第六章 逻辑斯蒂回归
第6章 逻辑斯谛回归基本梳理逻辑斯蒂回归模型回归广义线性模型与多重线性回归区别因变量不同用途寻找危险因素预测判别常规步骤寻找h函数(hypothesis)hθ(x)=g(θTx)=11+e−θTxh _ { \theta } ( x ) = g \left( \theta ^ { T } x \right) = \frac { 1 } { 1 +...原创 2018-12-03 16:05:52 · 365 阅读 · 0 评论 -
第五章 决策树
基本梳理:决策树模型与学习决策树是通过一系列规则对数据进行分类的过程优点推理过程容易理解依赖于属性变量忽略没有贡献的属性变量核心是归纳算法决策树相关的重要算法CLSID3C4.5CART特征选择决策树的CLS算法信息增益熵消息量大小的度量I(ai)=p(ai)log21p(ai)I \left( a _ { i } \right) ...原创 2018-11-30 16:30:17 · 273 阅读 · 0 评论 -
第三章 k近邻法
基本梳理思维导图k近邻算法原理特点优点精度高对异常值不敏感无数据输入假定缺点计算复杂度高空间复杂度高适用数据范围数值型和标称型工作原理训练样本集,知道样本集中每个数据与所属分类的对应的关系输入没有标签的新数据后,讲新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签...原创 2018-11-28 15:44:38 · 386 阅读 · 0 评论 -
sklearn之特征工程
转博客:http://www.cnblogs.com/jasonfreak/p/5448385.html什么是特征工程** 最大限度从原始数据中提取特征义工算法和模型使用**数据预处理# 导入数据from sklearn.datasets import load_irisiris = load_iris()iris.data iris.target特征问题不属于同一量...转载 2018-10-31 15:57:11 · 206 阅读 · 0 评论 -
sklearn之神经网络模型(有监督)
分类MLPClassifier参数说明:hidden_layer_sizes : 元组形式,长度n_layers-2,默认(100,),第i元素表示第i个神经元的个数activation: {‘identity’, ‘logistic’, ‘tanh’, ‘relu’},默认"relu"‘identity’: f(x) = x‘logistic’:f(x) = 1 / (1 ...原创 2018-10-19 15:36:47 · 1058 阅读 · 0 评论 -
sklearn之决策树
决策树分类from sklearn.datasets import load_irisfrom sklearn.model_selection import cross_val_scorefrom sklearn.tree import DecisionTreeClassifierclf = DecisionTreeClassifier(random_state=0)iris = lo...原创 2018-10-18 15:41:54 · 238 阅读 · 0 评论 -
sklearn的线性模型
广义线性模型普通最小二乘法from sklearn.linear_model import LinearRegressionreg = LinearRegression()reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])reg.coef_array([ 0.5, 0.5])岭回归from sklearn.linear_model ...原创 2018-10-17 15:51:41 · 362 阅读 · 0 评论 -
sklearn的模型选择和评估之交叉验证
import numpy as np交叉验证:评估学习器的表现划分数据为训练集和测试集X, y = np.arange(10).reshape((5, 2)), range(5)print(X)print(y)[[0 1] [2 3] [4 5] [6 7] [8 9]]range(0, 5)from sklearn.model_selection import tr...原创 2018-10-15 16:32:41 · 1965 阅读 · 0 评论
分享