_威行天下_
码龄9年
求更新 关注
提问 私信
  • 博客:30,842
    30,842
    总访问量
  • 35
    原创
  • 5
    粉丝
  • 39
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2016-04-06

个人简介:世界未亡 死不投降

博客简介:

koukehui0292的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得3次评论
  • 获得38次收藏
  • 博客总排名2,316,772名
创作历程
  • 2篇
    2022年
  • 2篇
    2019年
  • 32篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    17篇
  • python学习
    8篇
  • sklearn
    8篇
  • LeetCode
    11篇
  • 算法
    11篇
  • 数据库
    2篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【Anguarl访问后端】url总是为http://127.0.0.1:4200/127.0.0.1:8000/api/xxx

Angular访问后端总是带着前端地址
原创
发布博客 2022.06.07 ·
2523 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python】函数中首位参数用星号(*)表示什么意思

问题描述我们经常能看到这样的Python看到如下的函数def demo(*, foo=2, bar): print(foo, bar)那么请问函数中的*表示什么意思呢?解释:如果在函数首位添加星号(*)那么,后面参数不管是带默认值还是不带默认值不用考虑位置,如果你写成这样def demo(foo=2, bar): print(foo, bar)这是不允许的,带默认值参数应该还走最后这是Python约定的规则。所以,加上*之后,默认参数与非默认参数位置不强制 。...
原创
发布博客 2022.03.31 ·
1959 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[2/3]数据库学习

1.聚合与排序1.1 聚合查询聚合函数:COUNT,SUM,AVG,MAX,MINCOUNT:全部行数:select count(*) from <表名>除NULL之外的行数: select count(<列名>) from <表名>NOTE:*会包含NULL的数据行数,而(<列名>)会得到出NULL之外的数据行数S...
原创
发布博客 2019.01.08 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[1/3]数据库学习

1. 安装###1.1 安装过程下载安装程序根据自己系统傻瓜式安装,但是过程中需要你设置密码,这个密码一定要记住!提高安全性,配置一下文件C:\PostgreSQL\11\data\postgresql.conf将#listen_addresses = '*'注释掉,前面加个#,添加listen_addresses = 'localhost',这样只允许本地机器连接了.重新启动,找到“...
原创
发布博客 2019.01.07 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第8章 提升方法

第8章 提升方法基本梳理强可学习弱可学习强可学习的充分必要条件是弱可学习怎样获得不同的弱分类器使用不同的弱学习算法参数估计非参数估计使用相同弱学习算法,使用不同的参数K-mean不同的K神经网络不同的隐含层使用输入对象的不同表示凸显事物不同的特征使用不同的训练集baggingboosting怎样组合弱分类器多专家组合...
原创
发布博客 2018.12.06 ·
358 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第七章 支持向量机

第七章 支持向量机基本梳理参考链接:https://zhuanlan.zhihu.com/p/36332083二分类模型,间隔最大化的分类器训练数据线性可分硬间隔支持向量机近似可分软间隔支持向量机不可分非线性支持向量机感知机特殊情况线性支持向量机线性支持向量机假设函数y^=sign⁡(wTx+b)\hat { y ...
原创
发布博客 2018.12.05 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第六章 逻辑斯蒂回归

第6章 逻辑斯谛回归基本梳理逻辑斯蒂回归模型回归广义线性模型与多重线性回归区别因变量不同用途寻找危险因素预测判别常规步骤寻找h函数(hypothesis)hθ(x)=g(θTx)=11+e−θTxh _ { \theta } ( x ) = g \left( \theta ^ { T } x \right) = \frac { 1 } { 1 +...
原创
发布博客 2018.12.03 ·
366 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第五章 决策树

基本梳理:决策树模型与学习决策树是通过一系列规则对数据进行分类的过程优点推理过程容易理解依赖于属性变量忽略没有贡献的属性变量核心是归纳算法决策树相关的重要算法CLSID3C4.5CART特征选择决策树的CLS算法信息增益熵消息量大小的度量I(ai)=p(ai)log⁡21p(ai)I \left( a _ { i } \right) ...
原创
发布博客 2018.11.30 ·
274 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第四章 朴素贝叶斯

基本梳理朴素贝叶斯法的学习与分类基本方法训练集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T = \left\{ \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , \cdots , \left( x _ { N } , y _ { N ...
原创
发布博客 2018.11.29 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第四章 朴素贝叶斯

基本梳理朴素贝叶斯法的学习与分类基本方法训练集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T = \left\{ \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , \cdots , \left( x _ { N } , y _ { N ...
原创
发布博客 2018.11.29 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第三章 k近邻法

基本梳理思维导图k近邻算法原理特点优点精度高对异常值不敏感无数据输入假定缺点计算复杂度高空间复杂度高适用数据范围数值型和标称型工作原理训练样本集,知道样本集中每个数据与所属分类的对应的关系输入没有标签的新数据后,讲新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签...
原创
发布博客 2018.11.28 ·
387 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

701. 二叉搜索树中的插入操作

题目描述给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 保证原始二叉搜索树中不存在新值。注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果示例给定二叉搜索树: 4 / \ 2 7 / \ 1 3和 插入的值: ...
原创
发布博客 2018.11.28 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

756. 金字塔转换矩阵

题目描述:现在,我们用一些方块来堆砌一个金字塔。 每个方块用仅包含一个字母的字符串表示,例如 “Z”。使用三元组表示金字塔的堆砌规则如下:(A, B, C) 表示,“C”为顶层方块,方块“A”、“B”分别作为方块“C”下一层的的左、右子块。当且仅当(A, B, C)是被允许的三元组,我们才可以将其堆砌上。初始时,给定金字塔的基层 bottom,用一个字符串表示。一个允许的三元组列表 al...
原创
发布博客 2018.11.28 ·
847 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

756. 金字塔转换矩阵

题目描述:现在,我们用一些方块来堆砌一个金字塔。 每个方块用仅包含一个字母的字符串表示,例如 “Z”。使用三元组表示金字塔的堆砌规则如下:(A, B, C) 表示,“C”为顶层方块,方块“A”、“B”分别作为方块“C”下一层的的左、右子块。当且仅当(A, B, C)是被允许的三元组,我们才可以将其堆砌上。初始时,给定金字塔的基层 bottom,用一个字符串表示。一个允许的三元组列表 al...
原创
发布博客 2018.11.28 ·
847 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第二章 感知机

第二章 感知机基本梳理附上思维导图:感知机模型输入特征向量输出类别判别模型基于误分类损失函数利用梯度下降法对损失函数进行极小化学习算法原始形式对偶形式神经网络与支持向量机的基础定义几何解释感知机学习策略定义损失函数距离1∥w∥∣w⋅x0+b∣\frac { 1 } { \| w \| } \left| w \cdot x ...
原创
发布博客 2018.11.27 ·
321 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

统计学习方法 第一章

第一章 统计学习方法基本知识统计学习对象数字文字图像视频音频…目的预测分析方法Supervised learning训练数据(training data)模型(model) —假设空间 hypothesis评价准则 evaluation criterion ---- 策略 strategy算法 algorithmUnsupervise...
原创
发布博客 2018.11.26 ·
294 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二分搜索

参考相关文章:https://www.zhihu.com/question/36132386直接举例子:数组:a = [1,2,2,3,3,4,4]问题:1. 找到第一个(大于)等于`3`的位置;(答案:`3`)2. 找到第一个大于`3`的位置;(答案:`5`)3. 找到最后一个小于(等于)`3`的位置;(答案:`4`)4. 找到最后一个小于`3`的位置.(答案:`2`)我们知道...
原创
发布博客 2018.11.26 ·
169 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetCode Weekly Contest 112(945~948题)(Python实现)

第一题:使数组唯一的最小增量题型描述:给定整数数组 A,每次 move 操作将会选择任意 A[i],并将其递增 1。返回使 A 中的每个值都是唯一的最少操作次数。示例 1:输入:[1,2,2]输出:1解释:经过一次 move 操作,数组将变为 [1, 2, 3]。示例 2:输入:[3,2,1,2,1,7]输出:6解释:经过 6 次 move 操作,数组将变为 [3, 4,...
原创
发布博客 2018.11.25 ·
330 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

698. 划分为k个相等的子集(Python实现)

题目描述:给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。示例:示例 1:输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4输出: True说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。注意:1 <= k <= len(nums) &...
原创
发布博客 2018.11.24 ·
1116 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

474. 一和零

题型描述在计算机界中,我们总是追求用有限的资源获取最大的收益。现在,假设你分别支配着 m 个 0 和 n 个 1。另外,还有一个仅包含 0 和 1 字符串的数组。你的任务是使用给定的 m 个 0 和 n 个 1 ,找到能拼出存在于数组中的字符串的最大数量。每个 0 和 1 至多被使用一次。注意:给定 0 和 1 的数量都不会超过 100。给定字符串数组的长度不会超过 600。...
原创
发布博客 2018.11.24 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多