吴恩达课程学习笔记
文章平均质量分 88
KQ.
留在这里的所有资源都是本科时候自己的收获,目前进入研究生阶段啦,欢迎大家关注我其他的工作:https://github.com/Meaoxixi
展开
-
“吴恩达深度学习”第三周编程代码汇总(实现一个神经网络)
前言这篇博客主要记录"吴恩达depplearning系列课程"第三周编程作业代码+自己的补充理解的相关内容,以作为学习记录。学习过程中借鉴了各位大佬的代码,想要追根溯源的朋友可以看这几位大佬的博客:大树先生的博客(英文版),何宽(中文版)作为初学者,本文的代码是自己当前能做到的”终极满意缝合怪“,同时部分原搬的代码也加了很多注释,便于理解。目录编程练习环境:Pycharm 2017.1/python 3.8第1部分:需要准备的Packages1.1 - sigmoid函数,np.exp()的原创 2021-03-01 21:09:57 · 897 阅读 · 1 评论 -
“吴恩达deeplearning.ai”学习笔记(p47-p60:第二课时第一章:超参数调试、正则化以及优化)
1.机器深度学习的实操课程 1.1训练_开发_测试集 1.2偏差_方差 1.3机器学习基础 1.4正则化 1.5为什么正则化可以减少过拟合? 1.6Dropout正则化 1.7理解Dropout 1.8其他正则化方法 1.9归一化输入 1.10梯度消失于梯度爆炸 1.11神经网络的权重初始化 1.12梯度的数值逼近 1.13梯度检验 1.14关于梯度检验实现的注记...原创 2021-02-25 21:25:35 · 1293 阅读 · 0 评论 -
“吴恩达深度学习”第二周编程代码汇总(复现猫咪识别神经网络)
目录编程作业:使用Numpy的基础Python、logistic回归编程语言:Python第1部分:使用Numpy的Python基础知识(可选赋值),用numpy构建基本函数1.1 - sigmoid函数,np.exp()的一些前提介绍1.2 练习:使用numpy实现sigmoid函数1.3 sigmoid函数的梯度计算1.4 数组维度的重塑1.5 规范化矩阵的行1.6 广播(Broadcasting )和softmax功能第二部分:向量化2.1实现L1和L2损失函数原创 2021-02-20 16:34:36 · 828 阅读 · 3 评论 -
“吴恩达deeplearning.ai”学习笔记(p36-p44:第一课时第四章:深度神经网络)
目录上接(第三章:实现一个神经网络)第四章:深度神经网络4.1深层神经网络4.2前向和反向传播 4.2.1前向传播 4.2.2反向传播4.3深层网络中的前向传播4.4核对矩阵的维数4.5向量化实现的解释4.6搭建深层神经网络块4.7参数vs超参数4.8深度学习和大脑的关系第四章:深度神经网络4.1深层神经网络层数=隐藏层数+输出层用来描述深度神经网络的符号约定:①L——表示神经网络的层数②n^[l]——表示节点的数量,或者l层上的单元数量③a^[l]——表示原创 2021-02-18 22:57:34 · 737 阅读 · 0 评论 -
“吴恩达deeplearning.ai”学习笔记(p25-p35:第一课时第三章:实现一个神经网络)
目录上接(第二章:神经网络编程的基础知识)3.1神经网络概览 3.2神经网络表示3.3计算神经网络的输出3.4多个样本的向量化3.5向量化实现的解释3.6激活函数3.6.1 sigmoid函数3.6.2 tanh(z)(双曲正切函数)3.6.3 ReLU函数3.7为什么需要非线性激活函数?3.8激活函数的导数3.9神经网络的梯度下降算法的具体实现3.10(选修)直观理解反向传播(略)3.11随机初始化 3.1神经网络概览统一规定:【】表示神经网络层;()表示原创 2021-02-18 17:26:19 · 375 阅读 · 0 评论 -
“吴恩达deeplearning.ai”学习笔记(p7-p24:第一课时第二章:神经网络编程的的基础知识)
2.神经网络编程的基础知识2.1常用的符号:(x,y)——表示一个单独的训练样本,x作为特征向量输入,标签y值为0或1m:{(x(1),y(1)),(x(2),y(2))……(x(m),y(m))}——训练集由m个样本组成m_train——训练集样本数目m_test——测试集样本数目2.2logistic回归的模型理解:1) 是一个用于监督学习问题中的学习算法,当输出是0/1时,则为一个二元分类问题;2) 二分分类的问题的目标往往是训练出一个分类器,它以图片的特征向量作为x的输入,通过神经原创 2021-02-17 23:16:40 · 320 阅读 · 3 评论 -
“吴恩达deeplearning.ai”学习笔记(p1-p6:第一课时第一章:神经网络的基本概念)
深度学习“深度学习”:指训练神经网络1. 神经网络的基本概念1.1神经元(此例用以体会单个神经元的形式:假如我们要建立房价的预测模型,一共有六个房子。我们已知输入x即每个房子的面积(多少尺或者多少平方米),还知道其对应的输出y即每个房子的价格。根据这些输入输出,我们要建立一个函数模型,来预测房价:y=f(x)。ReLU函数(修正线性单元):函数开始为0,然后是一条直线1.2神经网络:是神经元(隐藏单元)的叠加,同时只需要给出输入特征x和输出y(基于一定数量的训练集),所有中间过程能够自己完成原创 2021-02-08 11:37:32 · 353 阅读 · 0 评论