放苹果(3)

#include<bits/stdc++.h>
using namespace std;
int m,n;
int up(int m,int n)
{
    if(m==0||n==1)return 1;
    if(m<n)return up(m,m);
    else return up(m,n-1)+up(m-n,n);
}
int main()
{
    int s;
    cin>>s;
    while(s--)
    {
        cin>>m>>n;
        cout<<up(m,n)<<endl;
    }
    return 0;
}
动态规划是一种常用的算法思想,可以用来解决一些具有重叠子问题和最优子结构性质的问题。在解决苹果的问题时,可以使用动态规划来求解。 假设有m个苹果和n个盘子,要求将这些苹果入盘子中,每个盘子可以为空,但每个盘子中至少要有一个苹果。问有多少种置方式? 首先,我们可以考虑边界情况,当只有一个盘子时,无论有多少个苹果,只有一种置方式。当只有一个苹果时,无论有多少个盘子,也只有一种置方式。 接下来,我们考虑一般情况。假设有m个苹果和n个盘子,我们可以将问题分为两种情况: 1. 至少有一个盘子为空:此时,我们可以将问题转化为将m个苹果入n-1个盘子中的问题,即f(m, n-1)。 2. 所有盘子都有苹果:此时,我们可以将每个盘子中的苹果数量减少一个,即将问题转化为将m-n个苹果入n个盘子中的问题,即f(m-n, n)。 因此,我们可以得到递推公式: f(m, n) = f(m, n-1) + f(m-n, n) 根据递推公式,我们可以使用动态规划来求解苹果的问题。我们可以使用一个二维数组dp来保存中间结果,其中dp[i][j]表示将i个苹果入j个盘子中的置方式数量。 具体的动态规划算法如下: 1. 初始化边界情况:当i=0或j=0时,dp[i][j] = 1。 2. 使用递推公式计算dp数组的其他元素: - 当i>0且j>0时,dp[i][j] = dp[i][j-1] + dp[i-j][j]。 最终,dp[m][n]即为将m个苹果入n个盘子中的置方式数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Famiglistimott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值