C语言-数据结构-归并排序(merge sort)-递归 迭代-源代码及分析

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/kuweicai/article/details/54731071

1. 归并排序

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序常用递归的方式实现,但是由于递归的固有缺陷,比如占用较大的运行空间,有些场合也会用迭代的方式。归并排序的时间复杂度为O(n*logn).


2. 源代码

2.1 递归

#include<stdio.h>
#define MAX_SIZE 10

void merging(int *l, int l_size, int *r, int r_size)
{
    int i, j, k, temp[MAX_SIZE];
    i=j=k=0;
    while(i<l_size && j<l_size)
    {   if(l[i]<r[j])
        {
            temp[k++]=l[i++];
        }
        else
        {
            temp[k++]=r[j++];
        }
    }
    while(i<l_size)
    {
        temp[k++]=l[i++];
    }
    while(j<r_size)
    {
        temp[k++]=r[j++];
    }

    for(i=0;i<l_size+r_size;i++)
    {
        l[i]=temp[i];
    }
}

void mergesort(int a[], int n)
{
    int *l=a;
    int *r=a+n/2;
    int l_size=n/2;
    int r_size=n-l_size;

    if(n>1)
    {
        mergesort(l, l_size);
        mergesort(r, r_size);
        merging(l,l_size,r,r_size);
    }
}

int main(void)
{
    int i;
    int a[10]={-1,5,2,6,0,3,9,1,7,4};
    printf("排序前:");
    for(i=1;i<10;i++)
    {
        printf("%d",a[i]);
    }
    mergesort(a, 9);
    //printf("\n\n共交换数据%d次\n\n", c);
    printf("排序后:");
    for(i=1;i<10;i++)
    {
        printf("%d",a[i]);
    }
    printf("\n\n\n");
    return 0;
}

2.2 迭代

#include <stdio.h>
#include <stdlib.h>

#define MAXSIZE 10

void MergeSort(int k[], int n)
{
	int i, next, left_min, left_max, right_min, right_max;
	int *temp = (int *)malloc(n * sizeof(int));

	for( i=1; i < n; i*=2 ) //i 为步长, 1, 2, 4, 8...
	{
		for( left_min=0; left_min < n-i; left_min = right_max )//从0开始,根据步长,向右分组排序
		{
			right_min = left_max = left_min + i;
			right_max = left_max + i;

			if( right_max > n )
			{
				right_max = n;
			}

			next = 0;

			//将k[]数组中小的数据备份到temp[]数组中,
			//结束条件是left部分或者right部分有一个已经完全拷贝到temp[]中
			while( left_min < left_max && right_min < right_max )
			{
				if( k[left_min] < k[right_min] )
				{
					temp[next++] = k[left_min++];
				}
				else
				{
					temp[next++] = k[right_min++];
				}
			}

			//现在k[]数组中没有备份的都是大的数据,有两种可能性,
			//一种是left部分拷贝完成,另一种可能性是right部分拷贝完成,对于后一种情况,
			//无需考虑,因为right部分本来就排在k[]数组中靠后的位置,
			//也就是存放大数据的位置,这里只需要考虑第一种情况,将left部分的较大的数据,从k[left_max],开始,
			//覆盖到k[right_min]的位置(k[right_min]中的数据上一部已经拷贝到temp[]数组中)
			while( left_min < left_max )
			{
				k[--right_min] = k[--left_max];
			}

			while( next > 0 )//,将temp[]数组中备份的数据重新拷贝回k[]数组中
			{
				k[--right_min] = temp[--next];
			}
		}
	}
}

int main()
{
	int i, a[10] = {5, 2, 6, 0, 3, 9, 1, 7, 4, 8};

	MergeSort(a, 10);

	printf("排序后的结果是:");
	for( i=0; i < 10; i++ )
	{
		printf("%d", a[i]);
	}
	printf("\n\n");

	return 0;
}


展开阅读全文

没有更多推荐了,返回首页