研究问题
图谱理论主要通过图的邻接矩阵,Laplacian矩阵等代数表示。应用组合矩阵论来研究图的拓扑性质及其确定性。利用图的一些谱性质来设计算法对规模较小的现实复杂网络中的社团结构进行叫准确的挖掘有现实的意义。
图谱理论的一个重要问题是谱确定问题,。即"哪些图可由它们的谱确定?。可以关于一般的图谱确定问题没有确定的结论,上世纪,部分研究证明了,几乎所有树图的补图不能由其邻接谱确定,几乎所有树图都不能由它们的Laplacian谱确定,等结论;各种研究给出了许多满足特定要求的谱确定图。迄今为止,我们只能知道所有具有n(较大)个顶点的图中谱确定图的比例远远小于非谱确定图,而大部分11或少于11个顶点的图是谱确定图。
谱的定义
A(G) L(G) Q(G) 分别是图的邻接矩阵、拉普拉斯矩阵、signless 拉普拉斯矩阵。它们都是实对称矩阵,n个特征值都为实数。我们将特征值组成的多重集合(multi-set)叫做谱,将其中最大的特征值叫做谱半径。
目前,更多的理论证明思路是给出由拉普拉斯确定的图形,而随着计算机技术的发展, ,计算结果显示当图的顶点数增大时,可由signless 拉普拉斯谱确定的图形比例再三种谱中最多,因此被认为具有很好的前景。
1015

被折叠的 条评论
为什么被折叠?



