混沌神经网络学习笔记四

首次提出混沌神经网络的概念:Adachi神经网络

Adachi神经网络结构图:假设外部激励函数为常数a,神经元的内部状态变量为y(t),神经元在时刻t的输出为x(t),不应性反馈常数为(通常为正值),不应性衰减因子为k。则可表示为:

                                                              

单个神经元的模型为下图:                                 

                                   

Adachi神经元模型和Nagumo-Sato神经元模型的重要区别是,Nagumo-Sato模型传输函数为阶跃函数,Adachi模型传输函数为Sigmoid函数。平均激活率的定义为:

                                                                   

超越方程:是指包含超越函数(指的是变量之间不能用有限次加、减、乘、除、乘方、开方运算表示的函数,如三角函数、对数函数、反三角函数、指数函数等等就是超越函数)的方程。

lyapunov(李雅普诺夫)指数:用来描述系统对初始值的极端敏感性。两个相差无几的初值所产生的轨迹,随着时间的推移按照指数方式进行分离,lyapunov指数就是用来定量描述这个现象的量。lyapunov指数可以衡量系统是否存在动力学混沌,正的lyapunov指数意味着在系统相空间中不管初始两条轨线的间距多么小,其差别都能随时间的演化成指数率增加而达到无法预测,这就是混沌现象。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/kwame211/article/details/80347548
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭