引言
在当今快速发展的人工智能领域,生成式AI(Generative AI)已经成为提升商业洞察力和自动化能力的重要工具。Oracle Cloud Infrastructure(OCI)的生成式AI服务不仅提供了一套最先进、可定制的大语音模型,还通过一个单一的API为用户提供广泛的用例支持。本文讲述如何在OCI平台上使用生成式AI模型,并通过LangChain集成以实现更高效的应用开发。
主要内容
OCI生成式AI服务简介
OCI的生成式AI服务是一个完全托管的平台,用户可以直接使用预训练模型或在专用AI集群上基于自己的数据创建和托管自定义模型。服务的API易于访问和使用,方便开发者快速集成AI功能。
使用LangChain集成OCI生成式AI
LangChain是一个强大的开发工具,简化了AI模型的使用。在OCI环境中使用LangChain,开发者需要满足几个先决条件,包括安装OCI SDK并设置相应的认证方式。
认证方式
OCI生成式AI支持多种认证方式:
- API密钥
- 会话令牌
- 实例主体
- 资源主体
具体的认证配置可以参考OCI SDK的官方文档。
代码示例
以下是一个完整的使用LangChain将OCI生成式AI服务集成到应用程序中的代码示例:
# 安装OCI SDK
!pip install -U oci
from langchain_community.embeddings import OCIGenAIEmbeddings
# 使用API密钥进行默认身份验证
embeddings = OCIGenAIEmbeddings(
model_id="MY_EMBEDDING_MODEL",
service_endpoint="{AI_URL}", # 使用API代理服务提高访问稳定性
compartment_id="MY_OCID",
)
query = "这是一条英语查询。"
response = embeddings.embed_query(query)
print(response)
documents = ["这是一个示例文档", "这是另一个示例文档"]
response = embeddings.embed_documents(documents)
print(response)
在代码中,{AI_URL}
是API端点的占位符,开发者应根据需要配置真实URL。
常见问题和解决方案
问题1:网络访问受限
不少地区可能会遇到网络层面的访问限制。在这种情况下,可以考虑使用API代理服务,以确保服务的稳定性和可达性。
问题2:认证失效
确认所使用的认证方式是否正确并有效,尤其当使用会话令牌时,应确保其在有效期内。
总结与进一步学习资源
本文介绍了如何使用OCI的生成式AI服务,并通过LangChain进行轻松集成。对该领域感兴趣的开发者可以通过以下资源深入学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—