神经网络隐藏层数和节点数

隐藏层数:

  1. 一般为1~2层,一般两层的神经网络可以表示任意非线性决策规划 ;
  2. 层数越多会增加训练的复杂度,还会带来过拟合的情况。

节点数:
以下是一些经验公式

  1. Nh=Nsα(Nin+Nout){N_h} = \frac{{{N_s}}}{{\alpha ({N_{in}} + {N_{out}})}}
  2. Nh=NinNout{N_h} = \sqrt {{N_{in}}{N_{out}}}
  3. Nh=Nin+Nout+α{N_h} = \sqrt {{N_{in}} + {N_{out}}}+\alpha
  4. Nh=log2Nin{N_h} = {\log _2}{N_{in}}

其中,Nin{N_{in}}为输入层节点数,Nout{N_{out}}为输出层节点数,Ns{N_{s}}为训练集的样本数量,α[1,10]\alpha\in \left[ {{\rm{1,10}}} \right]

发布了6 篇原创文章 · 获赞 1 · 访问量 236
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览