2023区块链运行服务治理框架研究

b4d4aa07a067aafc9c97f4e9d006534b.png

《报告》的发布将助力治理工作实现多方参与、专业监管和价值联通,有力促进金融行业区块链产品、服务和生态健康可持续发展,使区块链更好地服务我国高质量发展整体目标,满足人民群众对美好生活向往的需求。

关注公众号:【互联互通社区】,回复【QKL023】获取全部报告内容。

9086d626c11d69573e71bc422d5f4d0e.png

精彩推荐

QKL001:2020政务区块链发展白皮书

QKL002:2020年全球区块链发展趋势报告
QKL003:2020全球区块链创新应用示范项目集
QKL004:2021湖南省区块链
QKL005:区块链示范案例集
QKL006:华为区块链白皮书
QKL007:区块链产业全景图
QKL008:区块链赋能新型智慧城市白皮书
QKL009:基于区块链技术的供应链金融白皮书
QKL010:工业区块链应用白皮书
QKL011:全球区块链产业全景与趋势
QKL012:区块链技术与餐饮数字藏品发展趋势报告
QKL013:2021年中国区块链年度发展白皮书
QKL014:区块链基础设施研究报告(2022年)

QKL015:2022全球区块链创新应用示范案例集

QKL016:+区块应用报告(精选九篇)
             -“5G+区块链”融合发展与应用白皮书
             -“物联网+区块链”应用与发展白皮书
             -能源石化交易行业区块链应用白皮书
             -区块链技术及其在数字货币领域的应用
             -区块链技术与金融应用安全白皮书
             -区块链跨链技术发展及应用研究综述
             -区块链数字版权应用白皮书
             -区块链溯源应用白皮书
             -中国物流与区块链融合创新应用蓝皮书

QKL017:2022长三角产业区块链生态图谱

QKL018:联盟链运营治理框架(2022年)

QKL019:区块链白皮书(2022年)

QKL020:司法领域区块链创新发展白皮书

QKL021:2023全球区块链产业图谱报告

QKL022:2022-2023中国区块链发展年度报告

QKL023:2023区块链运行服务治理框架研究

以下是报告部分内容

6ccc33d063123c2e6e64a06e0fb0d005.jpeg

287f8d691dcc05a0d1cc821b6a004e6b.jpeg

23c5fb989dbbb2a95500190687789a48.jpeg

0334aa63f873c717b0c9cf177c8ae24f.jpeg

dbd54dd706487fda53a141dc7339fcd7.jpeg

6625bb94e39255bc2d62a0d346378cc0.jpeg

01ae389b9473735306c34aa3eed52912.jpeg

26ba24fa127f022cb04c2221556022c2.jpeg

a19c5ff57ba1fc3fecbb9eb2ad3a8d47.jpeg

619226b1e66c99c0dbdb9321ca71b763.jpeg

7934c9edc95c27352830f313ff907363.jpeg

749add7f20e4b5b2995c397085435c26.jpeg

23d17ba12f7ef0bc2c2e44371cf53116.jpeg

f2430d818472d3bd692545f0e8580ba5.jpeg

83cda6c11774c0cb8b7368fca8b30075.jpeg

cced7b8de44106b18e8789e737439d7f.jpeg

声明

来源:北京金融科技产业联盟,互联互通社区推荐阅读,版权归作者所有。文章内容仅代表作者独立观点,不代表互联互通社区立场,转载目的在于传递更多信息。如涉及作品版权问题,请联系我们删除或做相关处理!

24f87692b12871dd82ff8e95124951b1.jpeg

关注公众号:【互联互通社区】,回复【QKL023】获取全部报告内容。

eda65ec99b93691182af2f6207944227.png

非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值