文章目录
BNN神经网络
二值神经网络是在浮点神经网络的基础上,对权值和激活值(特征值)做二值化处理,即取值是+1或-1。BNN网络结构与CNN相同,主要在梯度下降、权值更新、卷积运算上做了一些优化处理。
BNN可以用于嵌入式或移动场景,这些场景没有GPU且计算能力和存储容量相对较弱且限制较大。
二值化
PYNQ上的BNN
导入BNN压缩包
百度网盘地址提取码:630r
csdn地址
所有内容皆来源于铱元素科技的pynq直播课
打开192.168.2.99进入jupyterbook
upload我们的bnn_pynq.zip压缩包
通过python脚本实现解压缩
(当然了,其实你完全可以解压完了再上传到jupyter notebook)
首先新建一个python脚本,输入以下代码
import zipfile
f = zipfile.ZipFile("./bnn_pynq.zip","r")
for file in f.namelist():
f.extract(file,"./BNN")
f.close()
简单解释:
Python 中 zipfile 模块提供了对 zip 压缩文件的一系列操作。
f=zipfile.ZipFile(“test.zip”,mode="")
其中的mode可以为
- r:解压
- w:压缩
- a:追加压缩
此处我们使用了r,解压。
接下来是将文件解压到目录
f.extract(file,"./BNN")
其参数为文件名和目标路径。(可选参数pwd = “密码!”)

ok现在在BNN路径下有我们的解压结果了,可以把压缩包无情删除。
案例1:MNIST数字识别
基本加载
打开第一个案例 01_BNN_MNIST
首先第一步是导入必要的库(python用多了满脑子调库)
import bnn
print(bnn.available_params(bnn.NETWORK_LFC))
classifier = bnn.PynqBNN(network=bnn.NETWORK_LFC) # 初始化分类器
这其实是一个自定义的overlay,在/BNN/bnn_pynq/bitstreams中可以看到。

接下来加载神经网络的参数,这里使用mnist
(MNIST 手写数字识别可是被誉为神经网络里的hello world啊hhhhh)
classifier.load_parameters("mnist")
载入图像
加载图像image.jpg(pillow库估计大伙都挺熟了),然后做一些图像增强之类的。
from PIL import Image as PIL_Image
from PIL import ImageEnhance
from PIL import ImageOps
orig_img_path = 'image.jpg'
# !fswebcam --no-banner --save {orig_img_path} -d /dev/video0 2> /dev/null # Loading the image from the webcam
img = PIL_Image.open(orig_img_path).convert("L") # convert in black and white
#Image enhancement
contr = ImageEnhance.Contrast(img)
img = contr.enhance(3) # The enhancement values (contrast and brightness)
bright = ImageEnhance.Brightness(img) # depends on backgroud, external lights etc
img = bright.enhance(4.0)
#Adding a border for future cropping
img = ImageOps.expand(img,border=80,fill='white')
img
其输出img结果为

本文介绍了BNN(二值化神经网络)的概念,强调其在嵌入式和移动场景中的应用。通过PYNQ平台,详细展示了如何导入和解压BNN压缩包,并提供了两个案例:一是MNIST数字识别,包括图像加载、格式转换及硬件、软件识别的过程;二是交通标志识别,演示了如何进行图像识别并处理单个图像中的多个标志。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



