PYNQ-Z2初识(四)——BNN(二值化神经网络)

本文介绍了BNN(二值化神经网络)的概念,强调其在嵌入式和移动场景中的应用。通过PYNQ平台,详细展示了如何导入和解压BNN压缩包,并提供了两个案例:一是MNIST数字识别,包括图像加载、格式转换及硬件、软件识别的过程;二是交通标志识别,演示了如何进行图像识别并处理单个图像中的多个标志。
摘要由CSDN通过智能技术生成

BNN神经网络

二值神经网络是在浮点神经网络的基础上,对权值和激活值(特征值)做二值化处理,即取值是+1或-1。BNN网络结构与CNN相同,主要在梯度下降、权值更新、卷积运算上做了一些优化处理。

BNN可以用于嵌入式或移动场景,这些场景没有GPU且计算能力和存储容量相对较弱且限制较大。

二值化

PYNQ上的BNN

导入BNN压缩包

百度网盘地址提取码:630r

csdn地址
所有内容皆来源于铱元素科技的pynq直播课

打开192.168.2.99进入jupyterbook
upload我们的bnn_pynq.zip压缩包

通过python脚本实现解压缩

(当然了,其实你完全可以解压完了再上传到jupyter notebook)
首先新建一个python脚本,输入以下代码

import zipfile
f = zipfile.ZipFile("./bnn_pynq.zip","r")
for file in f.namelist():
    f.extract(file,"./BNN")
f.close()

简单解释:
Python 中 zipfile 模块提供了对 zip 压缩文件的一系列操作。
f=zipfile.ZipFile(“test.zip”,mode="")
其中的mode可以为

  • r:解压
  • w:压缩
  • a:追加压缩

此处我们使用了r,解压。

接下来是将文件解压到目录
f.extract(file,"./BNN")
其参数为文件名和目标路径。(可选参数pwd = “密码!”)

在这里插入图片描述
ok现在在BNN路径下有我们的解压结果了,可以把压缩包无情删除。

案例1:MNIST数字识别

基本加载

打开第一个案例 01_BNN_MNIST

首先第一步是导入必要的库(python用多了满脑子调库)

import bnn
print(bnn.available_params(bnn.NETWORK_LFC))
classifier = bnn.PynqBNN(network=bnn.NETWORK_LFC)  # 初始化分类器

这其实是一个自定义的overlay,在/BNN/bnn_pynq/bitstreams中可以看到。
在这里插入图片描述
接下来加载神经网络的参数,这里使用mnist
(MNIST 手写数字识别可是被誉为神经网络里的hello world啊hhhhh)

classifier.load_parameters("mnist")

载入图像

加载图像image.jpg(pillow库估计大伙都挺熟了),然后做一些图像增强之类的。

from PIL import Image as PIL_Image
from PIL import ImageEnhance
from PIL import ImageOps

orig_img_path = 'image.jpg'
# !fswebcam  --no-banner --save {orig_img_path} -d /dev/video0 2> /dev/null # Loading the image from the webcam

img = PIL_Image.open(orig_img_path).convert("L")                          # convert in black and white
#Image enhancement                
contr = ImageEnhance.Contrast(img)
img = contr.enhance(3)                                                    # The enhancement values (contrast and brightness) 
bright = ImageEnhance.Brightness(img)                                     # depends on backgroud, external lights etc
img = bright.enhance(4.0)          

#Adding a border for future cropping
img = ImageOps.expand(img,border=80,fill='white') 
img

其输出img结果为

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>