「零基础保姆级教程」Ollama本地部署大模型全攻略 - 从安装到推理实战

安装指南

第一步:安装ollama

我们可以从官网下载ollama,此步骤支持windows、mac、ubuntu操作系统,此处仅以windows作为演示。

打开ollama官网:ollama.com 点击download按钮进行下载,下载完成后点击安装。

请添加图片描述

安装完成后,你的电脑右下角会有ollama的图标(如果没有看到,可以展开这点的状态栏检查)

验证安装是否成功:打开命令行(WIN+R,在运行中输入cmd后回车),输入ollama --version,如果命令执行成功,并输出了版本信息,说明安装成功了。

请添加图片描述

第二步:下载deepseek

打开命令行(WIN+R,在运行中输入cmd后回车),下载并运行deepseek-r1 1.5b蒸馏版。

	ollama run deepseek-r1:1.5b

请添加图片描述

下载完成后,ollama会为我们运行刚下载的大模型。下面是我运行成功的截图:

请添加图片描述

第三步:使用大模型

恭喜你已经在本地成功安装了第一个私有大模型。运行成功以后,我们可以直接在命令行和deepseek对话。

请添加图片描述

如你所见,这就是一个简单的对话窗口,也是大模型最原始的形态。

使用指南

安装完成后我们看到的是一个命令行窗口,使用起来并不方便。为了解决这个问题,我们需要将ollama集成到常用的AI工具中进行使用。

Chatbox篇

进入下载页面 chatboxai.app/zh 点击免费下载,下载完成后双击下载文件,完成安装。

请添加图片描述

安装完成后打开,你会看到一个聊天窗口:

请添加图片描述

使用ollama中的大模型

我们在上一篇中在本地安装了ollama和deepseek,现在我们把它集成到刚安装的chatbox中。

点击chatbox左下角的设置,我们仅需要三步即可完成配置:

  1. 模型提供方,选择Ollama API
  2. API域名,使用默认值
  3. 模型下拉框,我们选择deepseek-r1:1.5b

请添加图片描述

设置完成后点击保存,我们就完成了ollama的集成。

和本地大模型对话

点击左侧新对话,开启新的对话。

请添加图片描述

向大模型提问试试吧

请添加图片描述

创建智能体

恭喜你已经完成了ollama和chatbox的集成,现在你的对话数据都保留在本地,绝对的安全和隐私。

接下来,我们要定义一个自己的智能体,它可以为你完成特定的任务。

点击左下方的“我的搭档”,可以看到里面有很多chatbox预设的智能体:

请添加图片描述

如果没有找到你想要的,那么我们可以自定义一个智能体,让deepseek帮我们写周报。

点击新增

点击“创建新的AI搭档”按钮,打开创建智能体的对话框。我们需要两步:

  1. 输入搭档名称:周报生成器
  2. 输入人物设定:
角色:你是一个高效可靠的周报生成器,能够将用户输入的信息转化为一份高质量的周报。

	目标:收集用户输入的工作内容,对工作内容进行筛选和精简,做好排版,将排版好的周报输出。阅读对象是直属领导,需要注意语气和措辞
  1. 勾选掉分享给其它用户,然后保存

请添加图片描述

使用周报生成器

回到“我的搭档”对话框,点击刚刚定义好的周报生成器,开启新的对话窗口。

请添加图片描述

输入你本周的工作内容,试试deepseek帮你生成的周报吧

请添加图片描述

我这里看着还不错,甚至可以直接发给领导了,你生成的内容怎么样?遇到任何问题欢迎评论区和我交流

CherryStudio篇

CherryStudio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。 CherryStudio的高度自定义的设计、强大的扩展能力和友好的用户体验,使其成为专业用户和 AI 爱好者的理想选择。无论是零基础用户还是开发者,都能在 CherryStudio 中找到适合自己的AI功能,提升工作效率和创造力。

安装cherryStudio

官网地址:cherry-ai.com/
源代码地址:github.com/CherryHQ/ch…

从官网进行下载,小伙伴们注意,这个软件是完全免费的,不要相信任何收费版。

请添加图片描述

下载完成后进行安装。运行起来后界面如下:

请添加图片描述

集成ollama中的本地模型

将cherryStudio运行起来后,点击界面左下角的小齿轮进行设置。

  1. 点击左下角的小齿轮打开设置
  2. 在模型列表中选择ollama
  3. 点击右上角开关打开ollama
  4. API密钥空着不要填,API地址使用本地地址
  5. 点击管理,选择我们之前已经下载的deepseek r1模型

请添加图片描述

设置完成后点击左上角的聊天图标,即可开始进行AI对话了。

请添加图片描述

恭喜你,完成这一步骤,我们就已经成功的将ollama和cherryStudio集成到了一起。接下来让我们试试创建智能体吧。

创建智能体

请添加图片描述

在cherryStudio中集成了很多智能体,你只需要点击添加即可开始使用。

我们点击右侧“创建智能体”来创建一个自定义的智能体。

请添加图片描述

名字:周报生成器
提示词:

角色:你是一个高效可靠的周报生成器,能够将用户输入的信息转化为一份高质量的周报。
目标:收集用户输入的工作内容,对工作内容进行筛选和精简,做好排版,将排版好的周报输出。阅读对象是直属领导,需要注意语气和措辞

创建完成后,点击智能体,添加到助手中。然后回到聊天界面,使用新创建的智能体开始对话:

请添加图片描述

搭建知识库

AI知识库,作为人工智能技术与传统知识库概念的融合,是指利用人工智能算法和技术构建、管理和维护的信息存储系统。它不仅包含了大量的结构化、半结构化和非结构化数据,还具备智能检索、推理分析、自我学习和优化等高级功能。AI知识库通过模拟人类的认知过程,实现了对知识的有效组织和高效利用,为各种应用场景提供了强大的支持。

知识库是如何工作的?

知识库工作流程图(来源于CherryStudio Doc):

请添加图片描述

在上面的流程图里,我们可以看到知识库工作的步骤:

  1. 用户提问时,AI工具先查询知识库里已有的内容
  2. 将查询到的内容和用户的提问发送给大模型
  3. 大模型根据提供的内容生成答案

使用知识库增强检索来生成答案的技术有一个专门的名词RAG,这里面涉及到几个概念,如果你感兴趣可以继续深挖(由于本篇内容针对的是入门教程,不做太多概念性的讲解,后面有机会了再专门介绍)

构建私有知识库

接下来我们通过cherryStudio来构建私有的知识库。

首先打开cherryStudio,点击左侧的知识库:

获取嵌入模型
在构建知识库的过程中,需要选择要使用的嵌入模型。嵌入模型的主要功能是将用户的文本、图片等内容生成向量数据,用作向量搜索的。

在ollama中有很多嵌入模型供我们选择使用。我这里使用的是bge-m3,你可以通过下面的指令获取:

ollama pull bge-m3

注意:嵌入模型保存后不允许修改

添加知识内容
为了进行演示,我们将本系列教程的前三篇放入知识库中:

请添加图片描述

然后创建一个新的对话,在对话中选择创建的知识库:

请添加图片描述

验证一下效果(效果并不理想):

请添加图片描述

话外音

感觉deepseek又开始一本正经的胡说八道了,这可能和我们选择的模型有关,我们当前使用的是1.5b的模型,如果你的硬件允许,可以尝试下载更大的模型进行测试

我换了一个deepseek-r1:7b的模型重新验证了一下,效果比上面的要好一些:

请添加图片描述

影响知识库的因素

通过上面的例子我们可以看到,当切换了模型之后,生成内容的准确性有所提高。这说明我们需要尝试不同的模型,来达到自己满意的效果。

通常来说影响知识库输出质量的因素有:

  • 文档的质量
  • 嵌入模型的能力
  • 向量数据库的检索
  • 文档相关性排序能力
  • 系统Prompt质量
  • 大模型生成能力

当我们在进行实践时,切记一定要先进行验证,验证满意后再进行大规模的实施。

Ollama API 使用指南

请添加图片描述

Ollama 提供了一套简单好用的接口,让开发者能通过API轻松使用大语言模型。

本篇内容将使用Postman作为请求工具,和开发语言无关。

基本概念

在开始之前,我们先了解几个基本的概念:

  • Model:模型,我们调用接口时使用的模型名字。我们可以把Ollama理解为模型商店,它里面运行着很多模型,每个模型都有一个唯一的名字,例如deepseek-r1:1.5b
  • Prompt: 提示词,是我们给模型的指令。比如天空为什么是蓝色的就是一条简单的提示词。
  • Token:字符块,是大模型的最小输出单位,同时也是大模型的计费单位。举个例子,对于天空为什么是蓝色的这句话,大模型会进行拆分天空/为什么/是/蓝色/的,每一段就是一个token(实际情况会比这个例子复杂)

内容生成(/api/generate)

让大模型帮我们生成指定的内容,就可以使用内容生成接口。一问一答,不带上下文。

我们试着用最少的参数来调用:

	{

	  "model": "deepseek-r1:1.5b",

	  "prompt": "天空为什么是蓝色的"

	}

在postman里面看看输出:

请添加图片描述

可以看到输出的内容很长,这是因为默认采用的是stream的方式输出的,也就是我们在deepseek app里面看到的一个字一个字输出的那种效果。我们可以将stream参数设置成false来禁用流式输出。

	{

	    "model": "deepseek-r1:1.5b",

	    "prompt": "天空为什么是蓝色的",

	    "stream": false

	}

参数列表

参数名是否必填描述
model模型名称
prompt需要生成响应的提示词
suffix模型响应后追加的文本
imagesBase64编码的图片列表(适用于多模态模型如llava)
format返回响应的格式(可选值:json 或符合 JSON Schema 的结构)
options模型额外参数(对应 Modelfile 文档中的配置如 temperature
system自定义系统消息(覆盖 Modelfile 中的定义)
template使用的提示词模板(覆盖 Modelfile 中的定义)
stream设为 false 时返回单个响应对象而非流式对象
raw设为 true 时不格式化提示词(适用于已指定完整模板的情况)
keep_alive控制模型在内存中的保持时长(默认:5m)
context(已弃用)来自前次 /generate 请求的上下文参数,用于维持短期对话记忆

生成对话(/api/chat)

生成对话,是一种具备上下文记忆的内容生成。在内容生成API中,我们仅传入了prompt,大模型仅对我们本地的prompt进行回答,而在生成对话API中,我们还可以传入messages参数,包含我们多轮对话内容,使大模型具备记忆功能。

最简单的调用(为了方便演示,我们将stream参数设置为false):

{

	    "model": "deepseek-r1:1.5b",

	    "messages": [

	        {

	            "role": "user",

	            "content": "天空通常是什么颜色"

	        }

	    ],

	    "stream": false

	}

postman调用截图:

请添加图片描述

多轮对话

聊天的时候,ollama通过messages参数保持上下文记忆。当模型给我们回复内容之后,如果我们要继续追问,则可以使用以下方法(注意:deepseek-r1模型需要在上下文中移除think中的内容):

	{

	    "model": "deepseek-r1:1.5b",

	    "messages": [

	        {

	            "role": "user",

	            "content": "天空通常是什么颜色"

	        },

	        {

	            "role": "assistant",

	            "content": "天空通常看起来是**柔和的、明快的或稍微有些昏黄的色调**。具体颜色可能会因不同的天气情况而有所变化,例如:\n\n1. **晴朗天气**:天空可能呈现出温暖、明亮的颜色,比如蓝天、碧空等。\n2. **下雨天**:云层覆盖天空,可能导致颜色较为阴郁或变黑。\n3. **雨后天气**:雨后的天空可能恢复为明亮的色调。\n\n总的来说,天空的颜色主要取决于大气中的光线反射和折射情况,以及太阳的位置。"

	        },

	        {

	            "role": "user",

	            "content": "为什么是蓝色的?"

	        }

	    ],

	    "stream": false

	}

postman调用截图:

请添加图片描述

结构化数据提取

当我们和系统对接时,通常要需要从用户的自然语言中提到结构化数据,用来调用现有的外部系统的接口。在ollama中我们只需要指定format参数,就可以实现结构化数据的提取:

	{

	    "model": "deepseek-r1:1.5b",

	    "messages": [

	        {

	            "role": "user",

	            "content": "哈喽,大家好呀~ 我是拓荒者IT,今年36岁了,是一名软件工程师"

	        }

	    ],

	    "format": {

	        "type": "object",

	        "properties": {

	            "name": {

	                "type": "string"

	            },

	            "age": {

	                "type": "integer"

	            },

	            "job": {

	                "type": "string"

	            }

	        },

	        "required": [

	            "name",

	            "age",

	            "job"

	        ]

	    },

	    "stream": false

	}

参数列表

参数名是否必填描述
model模型名称
messages聊天消息数组(用于维持对话记忆)
messages.role消息角色(可选值:system, user, assistant, tool
messages.content消息内容
messages.images消息中Base64编码的图片列表(适用于多模态模型如llava)
messages.tool_calls模型希望调用的工具列表(JSON格式)
tools模型可使用的工具列表(JSON格式,需模型支持)
format返回响应的格式(可选值:json 或符合 JSON Schema 的结构)
options模型额外参数(对应 Modelfile 文档中的配置如 temperature
stream设为 false 时返回单个响应对象而非流式对象
keep_alive控制模型在内存中的保持时长(默认:5m)

生成嵌入数据(/api/embed)

嵌入数据的作用是将输入内容转换成向量,可以用于向量检索等场景。比如我们在第四篇中介绍的知识库,就需要用到embedding模型。

在调用embed接口时,我们要选择支持Embedding功能的模型,deepseek是不支持的。

调用示例:

	{

	  "model": "bge-m3",

	  "input": "为什么天空是蓝色的呢?"

	}

postman调用截图:

请添加图片描述

兼容openAI接口

因为现在很多应用、类库都是基于OpenAI构建的,为了让这些系统能够使用Ollama提供的模型,Ollama提供了一套兼容OpenAI的接口(官方说是实验性的,以后可能会有重大调整)。

因为这种兼容,使得我们可以直接通过OpenAI的python库、node库来访问ollama的服务,确实方便了不少。

注意:ollama属于第三方接口,不能100%支持OpenAI的接口能力,因此在使用的时候需要先了解清楚兼容的情况。

其它接口

ollama还有一些其它的接口,用来实现对模型的管理等功能,而这些功能我们通常会在命令行完成,因此不做详细说明。这些API的列表如下:

  • 模型创建(/api/create)
  • 列出本地模型(/api/tags)
  • 查看模型信息(/api/show)
  • 复制模型(/api/copy)
  • 删除模型(/api/delete)
  • 拉取模型(/api/pull)
  • 推送(上传)模型(/api/push)
  • 列出运行中的模型(/api/ps)
  • 查看ollama版本(/api/version)

这些接口的调用都非常简单,大家感兴趣的可以尝试以下。

C#集成指南

Ollama 提供了HTTP API的访问,如果需要使用SDK集成到项目中,需要引用第三方库OllamaSharp,直接使用nuget进行安装即可。

请添加图片描述

OllamaSharp功能亮点

  • 简单易用:几行代码就能玩转Ollama
  • 值得信赖:已为Semantic Kernal、.NET Aspire和Microsoft.Extensions.AI提供支持
  • 全接口覆盖:支持所有Ollama API接口,包括聊天对话、嵌入生成、模型列表查看、模型下载与创建等
  • 实时流传输:直接将响应流推送到您的应用
  • 进度可视化:实时反馈模型下载等任务的进度状态
  • 工具引擎:通过源码生成器提供强大的工具支持
  • 多模态能力:支持视觉模型处理

调用示例

初始化client

	// set up the client

	var uri = new Uri("http://localhost:11434");

	var ollama = new OllamaApiClient(uri);

获取模型列表

	// list models

	var models = await ollama.ListLocalModelsAsync();

	if (models != null && models.Any())

	{

	    Console.WriteLine("Models: ");

	    foreach (var model in models)

	    {

	        Console.WriteLine("  " + model.Name);

	    }

	}

创建对话

// chat with ollama

	var chat = new Chat(ollama);

	Console.WriteLine();

	Console.WriteLine($"Chat with {ollama.SelectedModel}");

	 

	while (true)

	{

	    var currentMessageCount = chat.Messages.Count;

	 

	    Console.Write(">>");

	    var message = Console.ReadLine();

	    await foreach (var answerToken in chat.SendAsync(message, Tools))

	        Console.Write(answerToken);

	 

	    Console.WriteLine();

	 

	    // find the latest message from the assistant and possible tools

	    var newMessages = chat.Messages.Skip(currentMessageCount - 1);

	    foreach (var newMessage in newMessages)

	    {

	        if (newMessage.ToolCalls?.Any() ?? false)

	        {

	            Console.WriteLine("\nTools used:");

	 

	            foreach (var function in newMessage.ToolCalls.Where(t => t.Function != null).Select(t => t.Function))

	            {

	                Console.WriteLine($"  - {function!.Name}");

	                Console.WriteLine($"    - parameters");

	 

	                if (function?.Arguments is not null)

	                {

	                    foreach (var argument in function.Arguments)

	                        Console.WriteLine($"      - {argument.Key}: {argument.Value}");

	                }

	            }

	        }

	 

	        if (newMessage.Role.GetValueOrDefault() == OllamaSharp.Models.Chat.ChatRole.Tool)

	            Console.WriteLine($"    - results: "{newMessage.Content}"");

	    }

	}

Tools

如果是LLM是大脑,那么工具就是四肢,通过工具我们能具备LLM与外界交互的能力。

定义工具:

/// <summary>

	/// Gets the current datetime

	/// </summary>

	/// <returns>The current datetime</returns>

	[OllamaTool]

	public static string GetDateTime() => $"{DateTime.Now: yyyy-MM-dd HH:mm:ss ddd}";

使用工具:

public static List<object> Tools { get; } = [

	    new GetDateTimeTool(),

	];

	 

	await chat.SendAsync(message, Tools)

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

内容概要:本文详细介绍了 DeepSeek 大语言模型本地部署方法,旨在帮助用户在本地环境中高效、稳定地使用 DeepSeek 模型,并保障数据的安全性。文章首先解释了本地部署的优势,包括处理私密数据、节省 API 调用费用、与本地工作结合等。接着,文章按步骤详细讲解了本地部署的具体操作,包括环境准备、安装依赖、创建虚拟环境、安装 PyTorch、克隆代码库、安装项目依赖、下载预训练模型、配置环境变量、运行模型、测试模型等。此外,还提供了简化版的本地部署方法——使用 Ollama 工具,适用于 Windows 系统用户。最后,介绍了可选的 Open-WebUI 图形界面安装,以提升用户体验。 适合人群:具备一定计算机基础和技术能力的用户,特别是对数据隐私有较高要求的企业和个人,以及需要频繁使用 DeepSeek 模型的开发者和研究人员。 使用场景及目标:① 适用于需要在本地环境中高效运行 DeepSeek 模型的用户,确保数据安全和隐私保护;② 适用于希望通过本地部署降低成本、提高灵活性和效率的用户;③ 适用于希望在开源模型基础上进行个性化定制和技术开发的用户。 其他说明:本文不仅提供了详细的图文步骤,还涵盖了多种操作系统和工具的选择,确保不同背景的用户都能顺利完成本地部署。对于遇到问题的用户,建议查阅相关文档或在技术论坛上寻求帮助。
### Ollama 使用教程 Ollama 是一款用于管理和运行大型语言模型的应用程序。通过简单的命令行操作即可完成模型的下载、配置以及调用。 #### 下载并安装 Ollama 访问官方网站获取最新版本的安装包[^1]: - 官方网址: [https://ollama.com/](https://ollama.com/) - GitHub 项目页面: [https://github.com/ollama/ollama](https://github.com/ollama/ollama) 按照官方文档中的指导完成软件安装过程。 #### 配置环境变量 (如果需要) 部分操作系统可能需要设置环境变量来确保 `ollama` 命令可以在任何位置执行。具体方法取决于所使用的平台,在 Linux 或 macOS 上通常可以通过编辑 `.bashrc` 文件实现;而在 Windows 中则需调整系统的 PATH 参数。 #### 获取可用的大规模预训练模型列表 为了查看当前支持哪些大规模预训练模型,可浏览在线库资源: - 模型仓库链接: [https://ollama.com/library](https://ollama.com/library) 这里列出了多种不同类型的自然语言处理任务适用的语言模型供用户挑选。 #### 运行选定的 LLM 模型实例 假设选择了名为 "llama2" 的模型作为实验对象,则只需打开终端窗口并键入如下指令启动该模型服务[^2]: ```shell ollama run llama2 ``` 这条语句会自动加载指定名称对应的模型文件,并准备就绪等待接收来自客户端应用程序的数据请求。 #### 发送 API 请求给已部署的服务端口 一旦上述步骤顺利完成之后,就可以利用 HTTP POST 方法向本地主机上的特定 URL 地址发送 JSON 格式的查询字符串了。例如: ```python import requests url = 'http://localhost:8080/v1/completions' data = { "prompt": "你好", "max_tokens": 50, } response = requests.post(url, json=data).json() print(response['choices'][0]['text']) ``` 这段 Python 脚本展示了如何构建一个简单的 RESTful API 调用来交互式地测试刚刚上线的语言理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值