第一次面试悲剧分享

常言道:幸福的生活只有一种,而不幸福的生活则有千千万万种。而我的第一次面试就属于千千万万种之一,虽然我曾经很傻很天真的以为会是唯一的那一种。

由于是tencent,去面试时还是有点小小的紧张和激动的,更多的是自信,觉得自己在这种完全没有准备的裸试中都可以脱颖而出真是牛叉爆了,可惜就是因为我一直存在的这种不真实的强大感而忽略了我笔试答题很烂这一非常重要的事实,以至于在胖子面试官给我信息提示时我都没有意识到他是在以怎样的态度来面我。而这就成为了造成我人生首面失利的最大原因。

回顾面试经历,无聊的对话可以忽略不计,于此也可以看出我是多么的没有脑壳没有经验,把如此关键的时刻白白用废话浪费掉了。

可是面试之后的反思和总结却让我收获良多,终于觉得不至于完全浪费掉了这次面试的宝贵经历。

在以后可能会面临的面试中,我需要首先对面试环境和形势做简单但准确的分析,拿这次面试为例:首先我要冷静的想到自己的笔试表现,做好简单解释的准备,因为这次的笔试答得比较烂,我就得找机会说最近项目太忙,没有时间去做复习。然后,面对考官第一件事要了解面的是哪个部门,用什么语言,主要工作是什么,我的项目经历、学习经历和该部门的工作有哪些联系。如这次是腾讯的游戏部门,用c和loowa来做编程,日常编程量很大。我就得对应其部门需要来充分表现自己,而不是一味的去讲python或者web开发,我应该主要讲我丰富的c编程经验和裸机游戏的编写,而且要展开讲,如何展开讲呢,肯定是从整体到部分,从全局到细节。先来讲本科时做的俄罗斯方块,之前应该做一做简单的功课,这个功课就由我现在补上:

1.学会了使用makefile和gdb,并在minix下工作

2.使用汇编调用13号中断2号子功能,将磁盘内容读入内存(0x7d0:0 ),并将指令指到相应位置

3.将编译过的可执行文件写到软盘的主引导扇区,挂在floppy从软盘启动,游戏启动

4.掌握到如何调用中断,寻找显存、中断向量的地址,通过汇编和C的联合编译完成一些简单的思路

5.在c语言中,理论上无法使用全局变量,这使得我们原本编好的c代码用修改了很多,无法对数组做整体的赋值

6.遇到中断嵌套的问题(键盘中断与时钟中断之间),最后通过改变c中的逻辑关系予以解决

7.遇到因某些寄存器未保护而出现的未知问题,写入第二扇区时遇到了分配空间过小的问题

经过这样的描述,相信面试官一定会认识到我对底层编程的了解。

然后再提到研究生阶段做过的很多的事,给他我研究生阶段很忙很认真的感觉,主要有:两个项目

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值