nyoj 1023 还是回文

思路:https://www.cnblogs.com/xueniwawa/p/3741145.html

题目大意:

    1、先给一个m,一个n

    2、再给一个字符串char str[MAX](MAX为一个很大的数),字符串长度为n

    字符串中的字符全为小写字母,m为这个字符串中字符的种类总数。例如m=3,n=4,str="abcb",str的长度为4,由a b c三类字符组成。

    3、接下来是m组数据,每组三个元素。每一组的第一个元素为字符,第二个为整数表示增加该字符的代价,第三个为整数表示删除该字符的代价。

    4、求使得str变为一个回文串的最小操作代价是多少(对str中的字符都是可删可增)。

解题思路:

*用别人的代码作为参考,自己想着应该是下面的意思,先琢磨着吧,发现有误的话,再更改。

    1、cost[26]对给出的所有的字符只保留对某个字符操作的最小操作代价,例如:a,1000(增),1100(删);那么cost['a'-'a']=1000;

    2、dp[MAX][MAX](MAX为一个很大的值)对字符串str进行处理,i,j表示dp[i][j]是对str第i位到第j位之间的字符串操作使其变为回文串的最小操作代价值。

        那么对于每个i到j的字符串都会有两种处理方案,(1)对i位置操作的代价+对i+1到j之间的字符串进行操作的最小代价(2)对i到j-1之间的字符串进行操作的最小代价+对ji位置操作的代价,所以就会得到:dp[i][j]=min(dp[i+1][j]+cost[str[i]-'a'],dp[i][j-1]+cost[str[j]-'a']);

       如果,str[i]==str[j],我们可以将i到j之间的串进行两种操作,1把它当做它自身来操作,2把它当做i+1到j-1之间的一个字符串来进行操作,例如:abcca,可以单纯的当做abcca进行上一段的操作,也可以就当做bcc来进行操作。所以,当str[i]==str[j]的时候,dp[i][j]=min(dp[i][j],dp[i+1][j-1]);

    3、输出dp[0][n-1]即可。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char str[2105];
int n,m;
int cost[27];
int dp[2105][2105];
int main(){
	while(scanf("%d%d",&n,&m)!=EOF){
		
		scanf("%s",str);
		memset(dp,0,sizeof(dp));
		memset(cost,0,sizeof(cost));
		
		for(int i=1;i<=n;i++){
			char op[2];
			int add,sub;
			scanf("%s%d%d",op,&add,&sub);
			cost[op[0]-'a']=min(add,sub);
		}
		for(int j=1;j<m;j++){
			for(int i=j-1;i>=0;i--){

				dp[i][j]=min(dp[i+1][j]+cost[str[i]-'a'],dp[i][j-1]+cost[str[j]-'a']);
				
				if(str[i]==str[j])
				dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
			}
		}
		
		printf("%d\n",dp[0][m-1]);
		
	}
	
	
	return 0;
}

阅读更多

没有更多推荐了,返回首页