昂贵的聘礼
Description
年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。酋长说:"嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。"探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。因此你需要在考虑所有的情况以后给他提供一个最好的方案。
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。 Input
输入第一行是两个整数M,N(1 <= N <= 100),依次表示地位等级差距限制和物品的总数。接下来按照编号从小到大依次给出了N个物品的描述。每个物品的描述开头是三个非负整数P、L、X(X < N),依次表示该物品的价格、主人的地位等级和替代品总数。接下来X行每行包括两个整数T和V,分别表示替代品的编号和"优惠价格"。
Output
输出最少需要的金币数。
Sample Input 1 4 10000 3 2 2 8000 3 5000 1000 2 1 4 200 3000 2 1 4 200 50 2 0 Sample Output 5250 Source |
=====================================算法分析=====================================
将每个物品看做点,其编号即物品编号,另外再将探险家看做编号为0的点,酋长的女儿看做编号为1的点。
将直接购买物品A的价格作为点0至点A的边的权值,将通过替代品B购买物品A的价格作为点B至点A的边的权值。
那么所求及点0至点1的最小权值,显然便是最短路了。
但是本题对最短路还有一个很大的限制,即最短路上的任意两个节点所代表物品的主人,其等级之差不等超过M。
这里一定要理解清楚题意中的“间接交易”,只要某两个人和探险家做过交易,就认为这两个人存在“间接交易”,从而得出上
述限制。
显然消除在求最短路时的等级限制影响只需确保所有点的等级在一个长度至多为M的等级区间内。
而现在根据终点1必定在路径上可以确定一个长度为2*M的等级区间[Lv1-M,Lv1+M]。
那么只需要枚举上述等级区间的所有长度为M的子区间,对每个子区间选取等级位于该区间内的点求最短路,并将最短的最短路作
为答案即可。
=======================================代码=======================================
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF1=0x7f;
const int INF4=0x7f7f7f7f;
const int MAXN=105;
int M,N,Level[MAXN],Dis[MAXN],Edge[MAXN][MAXN];
bool Vis[MAXN],PtInRange[MAXN];
struct NODE
{
NODE(int P,int D) { Pt=P; Dis=D; }
friend bool operator < (const NODE& A,const NODE& B) { return A.Dis>B.Dis; }
int Pt,Dis;
};
void Dijkstra()
{
memset(Vis,0,sizeof(Vis));
memset(Dis,INF1,sizeof(Dis));
priority_queue<NODE>q;
q.push(NODE(0,Dis[0]=0));
while(!q.empty())
{
NODE cur=q.top(); q.pop();
if(cur.Pt==1) { return; }
if(Vis[cur.Pt]) { continue; }
Vis[cur.Pt]=1;
for(int tmp=0;tmp<=N;++tmp)
{
if(PtInRange[tmp]&&Edge[cur.Pt][tmp]<Dis[tmp]-cur.Dis)
{
Dis[tmp]=cur.Dis+Edge[cur.Pt][tmp];
q.push(NODE(tmp,Dis[tmp]));
}
}
}
}
void ReaData()
{
memset(Edge,INF1,sizeof(Edge));
for(int i=1;i<=N;++i)
{
int X;
scanf("%d%d%d",&Edge[0][i],&Level[i],&X);
while(X--)
{
int T,V;
scanf("%d%d",&T,&V);
Edge[T][i]=V;
}
}
}
int main()
{
while(scanf("%d%d",&M,&N)==2)
{
ReaData();
int ans=INF4;
for(int i=Level[1]-M;i<=Level[1];++i) //枚举等级区间的左端点
{
memset(PtInRange,0,sizeof(PtInRange));
for(int j=1;j<=N;++j) //获取满足等级限制的点
{
if(i<=Level[j]&&Level[j]<=i+M) { PtInRange[j]=true; }
}
Dijkstra(); //求最短路并更新答案
if(Dis[1]<ans) { ans=Dis[1]; }
}
printf("%d\n",ans);
}
return 0;
}