L3-001 凑零钱 (30分)(dfs)

韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有 1 0 4 10^4 104枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。

输入格式:
输入第一行给出两个正整数:N(≤ 1 0 4 10^4 104)是硬币的总个数,M(≤ 1 0 2 10^2 102)是韩梅梅要付的款额。第二行给出 N 枚硬币的正整数面值。数字间以空格分隔。

输出格式:
在一行中输出硬币的面值 V​1≤V2≤⋯≤Vk,满足条件 V​1+V2+…+Vk=M。数字间以 1 个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出 No Solution。

注:我们说序列{ A[1],A[2],⋯ }比{ B[1],B[2],⋯ }“小”,是指存在 k≥1 使得 A[i]=B[i] 对所有 i<k 成立,并且 A[k]<B[k]。

输入样例 1:
8 9
5 9 8 7 2 3 4 1

输出样例 1:
1 3 5

输入样例 2:
4 8
7 2 4 3

输出样例 2:
No Solution

#include <bits/stdc++.h>
#define int long long
using namespace std;
int n,m,p[10001];
vector<int>v,vv;
void f(int i,int sum)
{
	if(sum>m||sum+p[i+1]<m)
	{
		return;
	}
	if(sum==m)
	{
      
		for(vector<int>::iterator it=vv.begin();it!=vv.end();it++)
		{
			if(it!=vv.begin())
			{
				cout<<" "; 
			}
			cout<<*it;
		}
		exit(0);
	} 
	for(int j=i+1;j<n;j++)
	{
        vv.push_back(v[j]);
		f(j,sum+v[j]);
        vv.pop_back();
	}
}
signed main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++)
	{
		int a;
		cin>>a;
		v.push_back(a);
	}
	sort(v.begin(),v.end());
    for(int i=n-1;i>=0;i--)
    {
        p[i]=p[i+1]+v[i];
    }
	for(int i=0;i<n;i++)
	{
        vv.push_back(v[i]);
		f(i,v[i]);
        vv.pop_back();
	}
    cout<<"No Solution";
} 
### L3-001 零钱问题的 Python 解决方案 以下是基于动态规划方法实现的一个标准解法,用于解决零钱问题。此算法的核心在于通过构建一个数组 `dp` 来记录达到某个金额所需的最少硬币数量。 #### 动态规划核心逻辑 为了找到最小硬币组合的数量,可以定义状态转移方程如下: 设 `coins` 是可用的硬币面额列表,目标金额为 `amount`,则可以通过以下方式计算最优解: \[ dp[i] = \min(dp[i], dp[i - coin] + 1) \] 其中 \( dp[i] \) 表示组成金额 \( i \) 所需的最少硬币数[^2]。 下面是完整的 Python 实现代码: ```python def min_coins(coins, amount): # 初始化 dp 数组,大小为 amount+1 并填充为无穷大 dp = [float(&#39;inf&#39;)] * (amount + 1) # 当金额为 0 时,所需硬币数为 0 dp[0] = 0 # 遍历每一种可能的目标金额 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float(&#39;inf&#39;): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[amount] if dp[amount] != float(&#39;inf&#39;) else -1 # 测试用例 if __name__ == "__main__": coins = list(map(int, input().split())) # 输入硬币种类 amount = int(input()) # 输入目标金额 result = min_coins(coins, amount) print(result) ``` 上述代码实现了动态规划的思想来求解最小硬币数目问题。如果无法恰好成指定金额,则返回 `-1` 表明无解。 #### 关键点解析 1. **初始化**:创建长度为 `amount + 1` 的数组并设置初始值为正无穷大 (`float(&#39;inf&#39;)`),表示尚未找到任何有效路径到达这些金额。 2. **边界条件处理**:当金额等于 0 时,不需要任何硬币即可满足需求,因此设定 `dp[0]=0`。 3. **双重循环更新 DP 值**:外层遍历所有可能的目标金额;内层尝试使用当前可选的所有硬币进行匹配,并不断优化已知的最佳结果。 4. **最终判断**:若经过全部迭代后仍未能降低至有限数值,则说明不存在合法解,应输出特殊标记(如这里采用的是 `-1`)。 #### 时间复杂度析 该算法的时间复杂度主要取决于两重嵌套循环结构——即对于每一个金额都要逐一考察所有的硬币选项。假设共有 m 种不同类型的硬币以及最大金额为 n ,那么整体时间开销大致为 O(m × n)---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小柳学渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值