L_0_Forever_LF的专栏

一个热爱OI的OIer

BZOJ5012[ioi2017]Train

下面定义的能走到/不能走到都是在A,B采取最优决策下的 因为充一次电能跑n个点,所以A胜利的条件就是能走到一个有充电站的环,B反之 如果一个充电车站不能走到任何一个充电车站(包括自己),那么我们可以把它视为不能充电的 我们不断bfs求出哪些充电车站不能被其他充电走到,然后去掉他们,重复这个过...

2018-06-20 16:02:06

阅读数:9

评论数:0

BZOJ4371: [IOI2015]sorting排序

我们假设E不操作,A把所有元素复位的最优解是枚举i,若他不在位置i上就和位置i交换,把他转化到图上正确性显然 现在E操作,我们假设位置0~n-1上有碟子0~n-1,碟子i上有苹果i 我们让E操作是交换碟子,A操作是交换苹果 发现这和原问题是等价的,于是我们就可以把E的操作和A的操作分离开来 ...

2018-06-18 21:59:51

阅读数:369

评论数:0

BZOJ4369: [IOI2015]teams分组

将一个人(A,B)视作一个二维平面上的点,则一个小组k可以看作是[0,k]x[k,+∞]的一个矩形 对于每个询问,我们从小到大处理k,每次将当前的可行区域内最低的那些点分配给k,对于不可行或之前取过的点的矩形区域,我们维护他们的拐点,这些拐点从左到右高度递减,用一个单调栈维护,查询矩形内点数可以...

2018-06-18 21:48:36

阅读数:20

评论数:0

5.28联考题解

A bzoj3777 先不考虑本质不同,计算总的方案数,问题相当于一个人每步至少跨越k个格子,求走到这n个格子中某个格子后停下来的方案数 我们设这个人一开始在无穷远,第一步走到的位置是0,然后设他走到第i个格子的方案数是f[i]f[i]f[i],不考虑循环对末尾选的限制,有f[i]=∑i−kj...

2018-05-29 09:53:31

阅读数:47

评论数:0

2017 ACM-ICPC World Finals 题解

先贴官方题解:http://www.csc.kth.se/~austrin/icpc/finals2017solutions.pdf Problem L Visual Python++ bzoj4959 不难发现匹配是唯一的,用set把匹配处理出来之后,横纵坐标各做一次扫描线判有没有相交或...

2018-05-17 22:10:30

阅读数:136

评论数:0

BZOJ4770: 图样

我们令f[n][k]f[n][k]f[n][k]表示n个点,每个点点权在[0,2k+1)[0,2k+1)[0,2^{k+1}),MST边权和的期望 转移的时候,我们枚举有i个点第k位为1,n-i个点第k位为0,则最后的MST一定是i个点和n-i个点之间连一条边,剩下i个点,n-i个点个组成一棵生...

2018-05-09 12:01:03

阅读数:32

评论数:0

BZOJ5308: [Zjoi2018]胖

一个点每被更新一次最短路都会对t贡献1 我们考虑所有和宫殿有边相连的瞭望塔,考虑他能更新到的区间,一定是连续的一段 我们可以二分这一段的左右端点,假设左端点在lll,这个瞭望塔在iii,那么就是要求[2l−i,i−1][2l−i,i−1][2l-i,i-1]这一段里面没有其他瞭望塔到lll的距...

2018-05-07 17:23:51

阅读数:35

评论数:0

BZOJ3585: mex

实际这题只需要考虑<=n的值 区间mex有两个经典做法,一个是莫队+对权值分块,另一个就是主席树 我们对1~i建立主席树,位置j维护1~i中,j最后一次出现的位置 查询l rl rl~r时,在第rrr棵主席树上找到第一...

2018-05-07 11:01:40

阅读数:27

评论数:0

BZOJ5212: [Zjoi2018]历史

一个LCT,已知每个点的Access次数,每次Access点x时,往上遇到的轻边数会产生贡献,求最大贡献和 先不考虑修改 我们定义轻边的父亲节点为产生这次贡献的节点 可以发现每个点产生的贡献只和其子树里相邻的Access操作是否相同有关,且他们是互相独立的 于是最大贡献和=每个点贡献的最大...

2018-05-07 10:57:43

阅读数:36

评论数:0

BZOJ4764: 弹飞大爷

和弹飞绵羊类似的,那题是维护一个内向树,这题是维护若干棵基环内向树和一棵内向树 同样的用LCT维护就好了 内向树可以直接维护,对于基环内向树,随便找环上一点x做根,记录他指向哪个点to[x] 对于Cut操作,不在环上可以直接断,否则断了之后要把x和to[x]连起来 对于Link操作,如果不...

2018-05-07 10:35:13

阅读数:31

评论数:0

BZOJ4671: 异或图

直接算连通的方案不好算,但要求某些点之间不连通的很好算,注意到图的点数不多,考虑容斥 用O(bell数)的复杂度枚举这个图的所有集合划分,计算每个不同集合的点一定不在一个联通块,同一个集合内的点没有限制(即不同集合间没有边)的方案数,把集合间的边编号,若图gi含有边ei,就在第ei位有个1,就是...

2018-04-27 10:43:09

阅读数:36

评论数:0

BZOJ3569: DZY Loves Chinese II

在线判无向图删掉一些边后是否还连通 我们建出这个无向图的一棵生成树,如果删掉一些边后这个图不连通,一定存在某一条树边,他被删去且覆盖他的所有非树边也被删去 于是我们给每条非树边随机一个权值,每条树边的权值为所有覆盖他的非树边的权值的异或和,那么“他被删去且覆盖他的所有非树边也被删去”对应的就是...

2018-04-27 10:06:38

阅读数:28

评论数:0

BZOJ4078: [Wf2014]Metal Processing Plant

不妨设D(S)<=D(T)D(S)<=D(T)D(S)D(T)D(T)D(T),对于D(S)D(S)D(S)显然满足二分性,我们可以二分他,然后对于边权>D(T)>D(T)>D(T)的边,他的两端...

2018-04-25 20:45:24

阅读数:28

评论数:0

BZOJ4772: 显而易见的数论

很多题套在一起的一个东西… 这个F(x,y)F(x,y)F(x,y)的type3看起来就很不可做,说明这题只能去枚举pi,pjpi,pjp_i,p_j的组合,去计算他们产生的贡献数 当pi=pjpi=pjp_i=p_j时,也就是我们对于一个出现了xxx个iii的划分方案,要统计他x(x−1)/...

2018-04-25 09:09:45

阅读数:39

评论数:0

BZOJ4609: [Wf2016]Branch Assignment

我们记dis1[i]为i到根的距离,dis2[i]为根到i的距离,s[i]为i所在集合的大小 发现对于i,他对答案的贡献就是(s[i]−1)(dis1[i]+dis2[i])(s[i]−1)(dis1[i]+dis2[i])(s[i]-1)(dis1[i]+dis2[i]) 因此处理出dis1...

2018-04-25 08:56:40

阅读数:38

评论数:0

BZOJ4714: 旋转排列

就是对于每个错排,统计里面有多少种环长 考虑枚举环长L,可以用容斥计算不含长为L的环的方案数cLcLc_L,总数减去cLcLc_L就是贡献 cL=∑[n/L]i=0((niL)∏ij=2(jL−1L−1)((L−1)!)i)cL=∑i=0[n/L]((iLn)∏j=2i(L−1jL−1)((L...

2018-04-25 08:24:12

阅读数:20

评论数:0

BZOJ5093: [Lydsy1711月赛]图的价值

n2cnt−n+1∑i=0n−1(n−1i)ikn2cnt−n+1∑i=0n−1(in−1)ikn2^{cnt-n+1}\sum_{i=0}^{n-1}(^{n-1}_i)i^k 其实就是要计算 ∑ni=0(ni)ik∑i=0n(in)ik\sum_{i=0}^n(^n_i)i^k 拆一下 ...

2018-04-10 17:06:27

阅读数:21

评论数:0

BZOJ2159: Crash 的文明世界

这篇写差分表和斯特林数介绍的不错 这题就是要计算这个东西 S(i)=∑j=1ndist(i,j)kS(i)=∑j=1ndist(i,j)kS(i)=\sum_{j=1}^ndist(i,j)^k 这个东西很难维护,我们把dist(i,j)kdist(i,j)kdist(i,j)^k拆一下...

2018-04-07 21:59:49

阅读数:36

评论数:0

BZOJ2876: [Noi2012]骑行川藏

显然最优情况下体力耗费恰好为E,我们记f(v1,v2….vn)为在这n个速度下蛋蛋骑到n的耗时,phi(v1,v2…vn)为在这n个速度下蛋蛋骑到n耗费的体力,那么我们就是要在满足phi=E的情况下求f这个函数的最优解,这个东西可以用拉格朗日乘数法做 我们设一个函数L(v1,v2....vn)=...

2018-04-07 21:23:55

阅读数:32

评论数:0

BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数

可以看一下这篇东西 推一下f(n),e(n)的柿子,有 (1+2–√)n+1(1+2)n+1(1+\sqrt 2)^{n+1} =(1+2–√)n(1+2–√)=(1+2)n(1+2)=(1+\sqrt 2)^n(1+\sqrt 2) =(e(n)+f(n)2–√)(1+2–√)=(e...

2018-04-07 20:18:30

阅读数:30

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭