L_0_Forever_LF的专栏

曾是一个OIer

BZOJ4772: 显而易见的数论

很多题套在一起的一个东西… 这个F(x,y)F(x,y)F(x,y)的type3看起来就很不可做,说明这题只能去枚举pi,pjpi,pjp_i,p_j的组合,去计算他们产生的贡献数 当pi=pjpi=pjp_i=p_j时,也就是我们对于一个出现了xxx个iii的划分方案,要统计他x(x−1)/...

2018-04-25 09:09:45

阅读数:75

评论数:0

BZOJ2159: Crash 的文明世界

这篇写差分表和斯特林数介绍的不错 这题就是要计算这个东西 S(i)=∑j=1ndist(i,j)kS(i)=∑j=1ndist(i,j)kS(i)=\sum_{j=1}^ndist(i,j)^k 这个东西很难维护,我们把dist(i,j)kdist(i,j)kdist(i,j)^k拆一下...

2018-04-07 21:59:49

阅读数:57

评论数:0

BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数

可以看一下这篇东西 推一下f(n),e(n)的柿子,有 (1+2–√)n+1(1+2)n+1(1+\sqrt 2)^{n+1} =(1+2–√)n(1+2–√)=(1+2)n(1+2)=(1+\sqrt 2)^n(1+\sqrt 2) =(e(n)+f(n)2–√)(1+2–√)=(e...

2018-04-07 20:18:30

阅读数:60

评论数:0

BZOJ3738&BZOJ4535: [Ontak2013]Kapita加强版

求Cnn+m10kmod1e9Cn+mn10kmod1e9\dfrac{C_{n+m}^n}{10^k}\mod 1e9,这个k很好弄,然后上面那玩意mod 1e18……… 组合数取模感觉到比较大的数据范围就变成一个很毒瘤的东西了啊qaq 丢发链接跑路…..这个题就是3.2里讲的那个分治(我总...

2018-03-13 11:53:31

阅读数:95

评论数:0

BZOJ3994: [SDOI2015]约数个数和

∑Ni=1∑Mj=1d(ij)∑i=1N∑j=1Md(ij)\sum_{i=1}^N\sum_{j=1}^Md(ij) 这个约数个数和好像是个经典套路qaq 我们分别枚举i,j的约数d1,d2,就可以计算方案数了,但要去重,因为有2*1=1*2=2这种情况,所以我们强制i的约数d1达到上限,即...

2018-03-10 14:57:25

阅读数:79

评论数:0

BZOJ4652: [Noi2016]循环之美

qaq

2018-03-09 10:39:46

阅读数:128

评论数:0

BZOJ4174: tty的求助

一开始一直觉得是搞掉一个∑∑\sum然后用类欧做然后就不会了qaq 看了题解发现跟类欧完全没关系qaq 为了方便以下用[x]代表⌊x⌋为了方便以下用[x]代表⌊x⌋为了方便以下用[x]代表\lfloor x \rfloor 我们要求这么个东西 ∑n=0N∑m=0M∑k=0M−1[nk+...

2018-02-26 13:58:17

阅读数:153

评论数:0

BZOJ3328: PYXFIB

我们要求这个东西 ∑ni=0CinFi[i mod k=0]∑i=0nCniFi[i mod k=0]\sum_{i=0}^nC_n^iFi[i\ mod\ k=0] 先不考虑k|ik|ik|...

2018-02-25 16:35:58

阅读数:110

评论数:0

BZOJ5118: Fib数列2

这个2比1简单吧.. P−−√\sqrt P判一下发现模数是个质数 因为有这个公式Fn=15√[(1+5√2)n−(1−5√2)n]Fn=\dfrac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n] 用二次剩余弄出在模这个质...

2018-01-14 16:59:42

阅读数:191

评论数:0

BZOJ5104: Fib数列

首先我们有Fib数列第n项的通项 Fn=15√[(1+5√2)n−(1−5√2)n]=NFn=\dfrac{1}{\sqrt 5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n]=N 先推一波柿子 (1+5√2)n−(1−5√2)n=5√N=T(...

2018-01-14 15:56:43

阅读数:468

评论数:0

二次剩余学习笔记

两篇比较好的blog,第二篇介绍了一些拓展的东西 http://blog.csdn.net/a_crazy_czy/article/details/51959546 http://blog.miskcoo.com/2014/08/quadratic-residue 因为个人数学不好,学这东西...

2018-01-13 16:24:26

阅读数:1125

评论数:0

BZOJ3859: Periodic Binary String

我们可以旋转串T,使得l~r等价于0~r-l 根据(r-l)%k可以将T分成T1,T2两部分,问题变成满足0<=a<2|T1|,0<=b<2|T2|0<=a<2^{|T1|},0<=b<2^{|T2|},pa+qb≡x(Mod p)pa+qb≡x ...

2018-01-10 22:11:58

阅读数:115

评论数:0

BZOJ3853: GCD Array

对原序列中所有(x,m)=d的ax+v,询问前缀和 对这个修改推一波柿子(以下省略下取整) v∑nx=1(x,m)=d−>v\sum_{x=1}^n(x,m)=d-> v∑n/dx=1(x,m/d)=1−>v\sum_{x=1}^{n/d}(x,m/d)=1-> v...

2018-01-05 08:02:23

阅读数:126

评论数:0

BZOJ1129: [POI2008]Per

模数m不是质数很麻烦qwq 先把他分解成m=∏Mi=1pikim=∏i=1Mpikim=\prod_{i=1}^Mpi^{ki} 用每个pikipikipi^{ki}做模数计算最后EXCRT合并 那么现在模数Mod=pikiMod=pikiMod=pi^{ki} 计算s的排名,按位枚举i,...

2017-12-08 10:09:24

阅读数:471

评论数:2

BZOJ3834: [Poi2014]Solar Panels

一开始看错题了,后来重新看了题…emmmm还是不会啊啊啊啊,写了个貌似复杂度很对的暴力交上去过了???(先讲一下我这个比较搞笑?的做法) 求a~b,c~d的数之间的最大的gcd,尝试枚举一下? 因为一个数x,他的>x√> \sqrt x的约数可以通过枚举<x√< \sq...

2017-11-29 21:52:08

阅读数:137

评论数:0

codeforces 582D - Number of Binominal Coefficients

emmmmmmmmmmmmmm 这题模拟赛的时候做过 当时back的时候推柿子推得很痛苦 现在再做还是不会….不过推柿子变得熟练了很多…题解: 因为组合数可以写成阶乘的形式Cmn=n!m!(n−m)!C_n^m=\dfrac{n!}{m!(n-m)!} 又因为pp是质数,组合数能否被pk...

2017-09-21 21:26:01

阅读数:207

评论数:0

BZOJ4555: [Tjoi2016&Heoi2016]求和

第二类斯特林数S(i,j)S(i,j)S(i,j)代表iii个数分成jjj个集合的方案数 f(n)=∑ni=0∑ij=0S(i,j)∗2j∗j!f(n)=∑i=0n∑j=0iS(i,j)∗2j∗j!f(n)=\sum_{i=0}^n \sum_{j=0}^i S(i,j)*2^j*j! 这里的...

2017-07-29 15:12:17

阅读数:503

评论数:2

弱省胡策Round5 Handle

题意: 给定B0...BnB_0...B_n,求A0...AnA_0...A_n满足Bi=∑nj=iCijAj(mod 988244353)Bi=\sum_{j=i}^nC_j^iA_j ( mod\ 988244353)题解: 拆组合数 得Bi=∑nj=ij!i!(j−i)!AjB_i=\...

2017-07-29 12:49:13

阅读数:145

评论数:0

BZOJ3771: Triple

我们写出斧头的生成函数F(x)F(x) 题目要求用1把、2把、3把斧头能拼出的方案数,不考虑顺序 那就要去掉非法情况和重复情况 所以就不能写成:F(x)+F2(x)+F3(x)F(x)+F^2(x)+F^3(x) 对于F2(x)F^2(x),他会有一把斧头用2次的情况 对于F3(x)F^...

2017-07-29 10:27:35

阅读数:191

评论数:0

BZOJ3028: 食物

好久没有更新博客了话说… 博主并没有退役….我们写出每种食物的生成函数 承德汉堡:1+x2+x4....=11−x21+x^2+x^4....=\frac{1}{1-x^2} 可乐:1+x1+x 鸡腿:1+x+x2=1−x31−x1+x+x^2=\frac{1-x^3}{1-x} 蜜桃多...

2017-07-29 09:36:53

阅读数:223

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭