BZOJ4555: [Tjoi2016&Heoi2016]求和

第二类斯特林数 S(i,j) S ( i , j ) 代表 i i 个数分成j个集合的方案数

f(n)=ni=0ij=0S(i,j)2jj! f ( n ) = ∑ i = 0 n ∑ j = 0 i S ( i , j ) ∗ 2 j ∗ j !

这里的 S(i,j)2jj! S ( i , j ) ∗ 2 j ∗ j ! 可以理解成i个数分成j个集合,考虑顺序,每个集合有2种状态的方案数
g(n)=ni=0S(n,i)2ii! g ( n ) = ∑ i = 0 n S ( n , i ) ∗ 2 i ∗ i ! ,即n个数分成若干个集合,考虑顺序,每个集合有2种状态方案数
枚举最后一个集合的个数,得到g(n)的递推式
g(n)=ni=12Cing(ni) g ( n ) = ∑ i = 1 n 2 ∗ C n i g ( n − i )
展开组合数
得: g(n)=2ni=1n!i!(ni)!g(ni) g ( n ) = 2 ∗ ∑ i = 1 n n ! i ! ( n − i ) ! g ( n − i )

于是 g(n)n!=ni=12i!g(ni)(ni)! g ( n ) n ! = ∑ i = 1 n 2 i ! g ( n − i ) ( n − i ) !

G(x)=i=0g(i)i!xi,H(x)=i=12i!xi G ( x ) = ∑ i = 0 ∞ g ( i ) i ! x i , H ( x ) = ∑ i = 1 ∞ 2 i ! x i
G=GH+1 G = G ∗ H + 1
于是 G=(1H)1 G = ( 1 − H ) − 1
然后多项式求逆就好了

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn = 410000;
const ll Mod = 998244353;
const ll g = 3;

int n,N;
ll inv[maxn];
ll w[maxn],G[maxn],H[maxn],t[maxn];
int id[maxn];

ll pw(ll x,int k)
{
    ll re=1;
    for(;k;k>>=1,x=(x*x)%Mod)
        if(k&1) (re*=x)%=Mod;
    return re;
}
void pre(const int u,const int ln)
{
    for(int i=0;i<u;i++) id[i]=(id[i>>1]>>1)|((i&1)<<ln-1);

    w[0]=1ll,w[1]=pw(g,(Mod-1)/u);
    for(int i=2;i<=u;i++) w[i]=w[i-1]*w[1]%Mod;
}
void DFT(ll s[],const int u,const int sig)
{
    for(int i=0;i<u;i++) if(i<id[i]) swap(s[i],s[id[i]]);
    for(int m=2;m<=u;m<<=1)
    {
        int t=m>>1,tt=u/m;
        for(int i=0;i<t;i++)
        {
            ll wn=sig==1?w[i*tt]:w[u-i*tt];
            for(int j=i;j<u;j+=m)
            {
                ll tx=s[j],ty=s[j+t]*wn%Mod;
                s[j]=(tx+ty)%Mod;
                s[j+t]=(tx-ty)%Mod;
            }
        }
    }
    if(sig==-1) 
    {
        ll tt=inv[u];
        for(int i=0;i<u;i++) s[i]=(s[i]*tt%Mod+Mod)%Mod;
    }
}
void get_inv(ll a[],ll b[],const int u,const int ln)
{
    if(u==1)
    {
        b[0]=pw(a[0],Mod-2);
        return;
    }
    get_inv(a,b,u>>1,ln-1);
    pre(u<<1,ln+1);
    for(int i=0;i<u;i++) t[i]=a[i],t[i+u]=0;
    DFT(t,u<<1,1); DFT(b,u<<1,1);
    for(int i=0;i<(u<<1);i++) t[i]=b[i]*(2ll-t[i]*b[i]%Mod)%Mod;
    DFT(t,u<<1,-1);
    for(int i=0;i<u;i++) b[i]=t[i],b[i+u]=0;
}
ll solve()
{
    int ln=0; N=1; while(N<=n) N<<=1,ln++;

    inv[1]=1ll;
    for(ll i=2;i<=(N<<1);i++)
        inv[i]=(Mod-Mod/i)*inv[Mod%i]%Mod;
    H[1]=2ll; for(int i=2;i<=n;i++) H[i]=H[i-1]*inv[i]%Mod;
    for(int i=1;i<=n;i++) H[i]=-H[i]+Mod; H[0]=1ll;

    get_inv(H,G,N,ln);

    ll re=G[0],ss=1ll;
    for(int i=1;i<=n;i++)
    {
        (ss*=(ll)i)%=Mod;
        (re+=G[i]*ss%Mod)%=Mod;
    }
    if(re<0) re+=Mod;
    return re;
}

int main()
{
    scanf("%d",&n);
    printf("%lld\n",solve());

    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值