LOJ#2461. 「2018 集训队互测 Day 1」完美的队列

版权声明:...............转载说一声并注明出处qaq............... https://blog.csdn.net/L_0_Forever_LF/article/details/80687436

可以先看一下这篇,写的比较详细了

我们考虑对每个询问j求出一个ed[j],表示在执行完(j,ed[j]]的操作后,j在序列里加入的所有x全部被pop出去了,就可以对每个颜色x求出若干个存在的区间,将这些区间取并,即可差分贡献到答案

现在考虑怎么求ed[j]
我们将原序列分块,操作j覆盖了若干个整块和0/1/2个散块,我们分开考虑整块和散块对ed[j]的贡献
设操作j加入了元素xj

对于整块,我们枚举每个块,维护两个指针j,k,表示当前考虑的操作是(j,k]
b[i]表示位置i再被push b[i]次后就会将xjpop掉
mx=max(b[i])
cov表示这个块被完整覆盖了cov次
mx-cov<=0时就代表这个块内的所有xj都被pop出去了,此时k就可以对ed[j]产生贡献
考虑怎么维护,新加入一个操作时,若他完整覆盖了这个块,cov++,否则若他和这个块有交,交集部分的b[i]- -,然后直接扫一遍整个块更新mx,撤销操作类似
每个操作贡献至多2n,这部分的复杂度是mn

对于散块,我们需要在处理整块的时候先处理一些东西:
s[i]表示操作1~i完整覆盖了当前块s[i]
c[i]表示第i个完整覆盖当前块的操作
d[i]表示第i个不完整覆盖当前块,但和当前块有交的操作
e[i]表示s[j]=ij里面最小的j

然后我们枚举整块里的每个位置i,考虑他作为被散块覆盖的贡献
d[]上维护双指针j,k,表示当前考虑的操作是(d[j],d[k] ],维护一个mx表示位置i当前被覆盖的次数
对于每个jk不断往后跳直到mx<=0,mx可以用前缀和及操作d[j],d[k]是否覆盖i直接更新,然后根据mx是否=0,操作d[k]是否覆盖i,是可以用上面处理的几个数组O(1)找到位置ixj被pop出去的时刻的
这部分的复杂度只跟每个块的d[]的大小有关,每个操作对贡献O(1)d[],所以这部分的复杂度也是mn

所以总复杂度是O(mn)

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
#define pb push_back
#define mp make_pair
#define SZ(x) (int)x.size()
#define fir first
#define sec second
using namespace std;

inline void read(int &x)
{
    char c; while(!((c=getchar())>='0'&&c<='9'));
    x=c-'0';
    while((c=getchar())>='0'&&c<='9') (x*=10)+=c-'0';
}
inline void up(int &a,const int &b){if(a<b)a=b;}
const int maxn = 210000;

int n,m,N;
int a[maxn],b[maxn];
int l[maxn],r[maxn],X[maxn],ed[maxn];

int s[maxn];
int c[maxn],cn,d[maxn],dn,e[maxn];

vector< pair<int,int> >V[maxn];
int f[maxn];

int main()
{
    //freopen("tmp.in","r",stdin);
    //freopen("tmp.out","w",stdout);

    read(n); read(m); N=sqrt(n);
    for(int i=1;i<=n;i++) read(a[i]);
    for(int i=1;i<=m;i++) read(l[i]),read(r[i]),read(X[i]);

    for(int L=1;L<=n;L+=N)
    {
        int R=min(L+N-1,n);
        int mx=0; for(int i=L;i<=R;i++) up(mx,b[i]=a[i]);
        cn=dn=0;
        for(int j=1,k=0,cov=0;j<=m;j++)
        {
            if(l[j]<=L&&r[j]>=R) cov--;
            else if(l[j]<=R&&r[j]>=L)
            {
                for(int i=max(l[j],L),ui=min(r[j],R);i<=ui;i++) b[i]++;
                mx=0; for(int i=L;i<=R;i++) up(mx,b[i]);
            }
            while(k<=m&&mx-cov>0)
            {
                ++k;
                if(l[k]<=L&&r[k]>=R) cov++;
                else if(l[k]<=R&&r[k]>=L)
                {
                    for(int i=max(l[k],L),ui=min(r[k],R);i<=ui;i++) b[i]--;
                    mx=0; for(int i=L;i<=R;i++) up(mx,b[i]);
                }
            }

            s[j]=s[j-1];
            if(l[j]<=L&&r[j]>=R) up(ed[j],k),s[c[++cn]=j]++;
            else if(l[j]<=R&&r[j]>=L) d[++dn]=j,e[dn]=cn;
        }
        for(int i=L;i<=R;i++)
        {
            mx=a[i];
            for(int j=1,k=0;j<=dn;j++)
            {
                mx+=s[d[j]]-s[d[j-1]];
                if(l[d[j]]<=i&&r[d[j]]>=i)
                {
                    mx++;
                    while(k<dn&&mx>0) ++k,mx-=s[d[k]]-s[d[k-1]]+(l[d[k]]<=i&&r[d[k]]>=i);
                    if(mx>0)
                    {
                        if(mx>s[m]-s[d[k]]) ed[d[j]]=m+1;
                        else up(ed[d[j]],c[e[k]+mx]);
                        continue;
                    }

                    if(l[d[k]]<=i&&r[d[k]]>=i) up(ed[d[j]],mx<0?c[e[k]+mx+1]:d[k]);
                    else up(ed[d[j]],c[e[k]+mx]);
                }
            }
        }
    }

    //for(int i=1;i<=m;i++) printf("%d\n",ed[i]);

    for(int i=1;i<=m;i++) V[X[i]].pb(mp(i,1)),V[X[i]].pb(mp(ed[i],-1));
    for(int i=1;i<=100000;i++) 
    {
        sort(V[i].begin(),V[i].end());
        int now=0;
        for(int j=0;j<SZ(V[i]);j++)
        {
            int lnow=now;
            now+=V[i][j].sec;
            for(int k=j+1;k<SZ(V[i])&&V[i][k].fir==V[i][j].fir;k++)
                now+=V[i][k].sec,j=k;
            if(lnow==0&&now>0) f[V[i][j].fir]++;
            else if(lnow>0&&now==0) f[V[i][j].fir]--;
        }
    }

    for(int i=1,ans=0;i<=m;i++) printf("%d\n",(ans+=f[i]));

    return 0;
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页