浮点数的表示【易】

浮点数是啥?
浮点数就像是一个数学里的“万能钥匙”,它可以用来表示各种各样的实数,比如小数、分数,甚至是特别大或特别小的数字。
浮点数的三要素
底数(r):通常我们用2作为底数,就像我们用10来表示数字一样。
阶码(E):这个就像是数字的大小级别,比如100和0.01,它们的大小级别就差很远。
尾数(M):这部分就是数字的具体内容,比如0.1234,这里的1234就是尾数。
规格化浮点数
规格化就像是给数字排排队,让它们看起来整齐一些。如果一个浮点数的尾数最高位不是1,我们就通过左移或右移尾数,调整阶码,直到它变成1。这样,所有的浮点数看起来就都是以1开头的了。
规格化后的数字
正数:看起来像是0.1xxxx,最大的正数是0.111...(无限1),最小的正数是0.100...(后面全是0)。
负数:如果是原码,看起来像是1.1xxxx,最大的负数是1.101...(无限0),最小的负数是1.110...(无限1)。如果是补码,看起来像是1.0xxxx,最大的负数是1.011...(无限1),最小的负数是1.000...(后面全是0)。
IEEE 754标准
IEEE 754标准就像是浮点数的“宪法”,它规定了浮点数应该怎么存储和表示。这个标准告诉我们:
短浮点数可以表示的范围是从非常小的数到非常大的数。
长浮点数的范围更大,可以表示更极端的数字。
定点数和浮点数的区别
范围:浮点数可以表示的范围比定点数大得多。
精度:虽然浮点数的范围大,但是它的精度(就是能精确到多少位)可能会比定点数低一些。
运算:浮点数的运算比定点数要复杂,就像是用尺子量东西比用眼睛估计要复杂一样。
溢出:浮点数只有在它的阶码超出了它能表示的范围时,才会溢出。这就像是水杯满了,再倒水就会溢出来。
 

相关知识点


浮点数表示格式
浮点数是一种用于近似表示实数的数值格式,它由三部分组成:
r:浮点数阶码的底数,通常取值为2。
E:阶码,它反映了浮点数的表示范围和实际的小数点位置。
M:尾数,表示数值部分的位数,其位数为n,反映了浮点数的精度。
规格化浮点数
概念:通过调整尾数和阶码,使得非零浮点数在尾数的最高位上保证是个有效值。
左规:当浮点数运算结果为非规格化时,将尾数左移一位,阶码减1。
右规:当尾数出现溢出时,将尾数右移一位,阶码加1。
规格化后的原码和补码
原码:
正数:0.1××…×形式,最大值为0.11…1,最小值为0.10…0。
负数:1.1××…×形式,最大值为1.10…0,最小值为1.11…1。
补码:
正数:0.1××…×形式,最大值为0.11…1,最小值为0.10…0。
负数:1.0××…×形式,最大值为1.01…1,最小值为1.00…0。
基数
基数2:原码规格化最高位一定是1,补码规格化数的尾数最高位一定与尾数符号位相反。
基数4:原码规格化形式的尾数最高2位不全为0。
基数8:原码规格化形式尾数最高3位不全为0。
IEEE 754标准
浮点数格式:IEEE 754标准定义了浮点数的存储和表示方式。
浮点数范围:
短浮点数:2^{-126} 到 2^{127} \times (2 - 2^{-23})
长浮点数:2^{-1022} 到 2^{1023} \times (2 - 2^{-52})
隐含尾数最高数位:短浮点数与长浮点数都采用这种方式,可以多表示一位尾数。
定点数与浮点数的区别
范围:相同字长条件下,浮点数的范围更大。
精度:字长相同,浮点数的精度降低。
运算复杂性:浮点数运算比定点数复杂。
溢出:浮点数只有在规格化后阶码超出表示范围时,才发生溢出。
 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值