拿金币 蓝桥杯--动态规划

1.动态规划基本概念

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果

2.动态规划的基本思想

动态规划算法:通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式 。

3.具体实例-拿金币-问题描述

有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。
输入格式
  第一行输入一个正整数n。
  以下n行描述该方格。金币数保证是不超过1000的正整数。
输出格式
  最多能拿金币数量。
样例输入

3
1 3 3
2 2 2
3 1 2

样例输出

11
数据规模和约定
n<=1000

4.解题思路分析

我们使用一个二维组进行存储到达a[i][j]这点可以拿到金币的最大值,因为本题只能往下或者往右进行拿金币,所以我们到达a[i][j]点的方式只有两种:第一种,从a[i][j-1]到a[i][j]。第二种,从a[i-1][j]到达。所以我们求出到a[i][j-1] 和a[i-1][j]的最大值,然后加上a[i][j]这一点的金币,就是到达a[i][j]这点所能够拿到的最大值,一次进行递推,就可以递推到a[n][n]–终点。我们就可以用n的平方的时间复杂度求得,从起点到重点所能拿到的最大的金币数。

5.解题代码:

1.优化前:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 1000+10;

int a[N][N], r[N][N];
int n;

int main() {
	cin >> n;
	
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			cin >> a[i][j];
			
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			r[i][j] = max(r[i][j-1], r[i-1][j]) + a[i][j];
		}
	}
	cout << r[n][n];
	return 0;
}

2.优化后:

主要是进行空间的优化。

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1000+10;

int a[N][N];
int n;

int main() {
	cin >> n;
	
	//录入数据 
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			cin >> a[i][j];
	
	//a[i][j]为从a[0][0]到a[i][j]的路线上的拿到的最大值。
	//那a[i][j]如何得到呢?
	//a[i][j] =  max(a[i][j-1], a[i-1][j]);    
			//==>等价于 求上一个可以到达a[i][j]的两条路线中,
			//     离a[i][j]最近的那两个点的最大值 加上 a[i][j]该点的金币,
			//	   就得到了a[i][j]这点可以拿到的最大值
			//     所以到了a[n][n]即是到达终点可以拿到的最大数量的金币. 
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			a[i][j] += max(a[i][j-1], a[i-1][j]);
		}
	}
	cout << a[n][n];

	return 0;
}


算法重在思考,从一个模板题到应用有很长的一段路要走,模板的深刻理解可以帮助我们很快的可以进行灵活运用。

如果以上对你有一点点帮助,点个关注,相互学习,相互沟通,共同进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loongloongz

相互鼓励,相互帮助,共同进步。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值