动态规划-0/1背包优化(含全部代码)

本文深入探讨并优化了01背包问题的经典算法,通过减少空间复杂度,仅保留一行状态转移方程所需的变量,实现了更高效的解决方案。文章详细解释了状态转移方程的变化过程,以及如何在面对有限背包容量和不同物品的重量与价值时,求解最大总价值。

题目:假设你是一个小偷,有一个可放总重量为m(m<1000)的背包。现有n(n<32)件物品。
      总量分别为W1,W2,...,Wn。并且,物品具有价值,分别为V1,V2,...,Vn。m、n、Wi(1=<i<=n)均为正整数,
      现要求你尝试挑选几件物品,使这些物品重量之和为m。求能装入的最大总价值。
输入格式:
第一行为两个正整数m和n
接下来n行分别为n对整数,分别表示该物品的重量和价值。      
Example:
Input:
4 3
1 1500
3 2000
4 3000
Output:
3500  
【分析】 假设物品1为吉他(G表示)、物品2为音响(S表示)、物品3为笔记本电脑(C表示)
          dp[i][j]表示前i件物品,在重量为j时的最大价值。很明显,出口即为第0行(没有物品)和第0列(没有背包空间)。
          状态转移方程
          dp[i-1][j],W[i]>j(装不下,当没看见物品i吧)
          max(dp[i-1][j],dp[i-1][j-W[i]]+V[i]) ,W[i]<=j(装的下,聪明的你选择装与不装的最佳方案)
          
          以上是未优化的01背包分析,为方便读者,没有删除,省得翻之前的文章了。
          由为优化的0/1背包分析可知,dp[i][j]只与上一行有关,因此,可以只保留一行。另外,W[i]与V[i]也可只保留一个。
          减少空间复杂度。
          dp[j]表示背包重量为j时,在看见前i件物品时的最高价值。
          状态转移方程:
          dp[j],W>j
          max(dp[j-W]+V,dp[j]),W<=j比较价值

代码:

/*
Project: dp_01bag_better
Date:    2019/01/11
Author:  Frank Yu
题目:假设你是一个小偷,有一个可放总重量为m(m<1000)的背包。现有n(n<32)件物品。
      总量分别为W1,W2,...,Wn。并且,物品具有价值,分别为V1,V2,...,Vn。m、n、Wi(1=<i<=n)均为正整数,
	  现要求你尝试挑选几件物品,使这些物品重量之和为m。求能装入的最大总价值。 
输入格式:
第一行为两个正整数m和n
接下来n行分别为n对整数,分别表示该物品的重量和价值。	  
Example:
Input:
4 3 
1 1500
3 2000
4 3000
Output: 
3500  
【分析】 假设物品1为吉他(G表示)、物品2为音响(S表示)、物品3为笔记本电脑(C表示)
          dp[i][j]表示前i件物品,在重量为j时的最大价值。很明显,出口即为第0行(没有物品)和第0列(没有背包空间)。
		  状态转移方程 
		  dp[i-1][j],W[i]>j(装不下,当没看见物品i吧) 
		  max(dp[i-1][j],dp[i-1][j-W[i]]+V[i]) ,W[i]<=j(装的下,聪明的你选择装与不装的最佳方案) 
		  
		  以上是未优化的01背包分析,为方便读者,没有删除,省得翻之前的文章了。
		  由为优化的0/1背包分析可知,dp[i][j]只与上一行有关,因此,可以只保留一行。另外,W[i]与V[i]也可只保留一个。
		  减少空间复杂度。 
		  dp[j]表示背包重量为j时,在看见前i件物品时的最高价值。
		  状态转移方程:
		  dp[j],W>j
		  max(dp[j-W]+V,dp[j]),W<=j比较价值 
		   
*/
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<string>
#include<set>
#include<list>
#include<vector>
#include<map>
#include<iterator>
#include<algorithm>
#include<iostream>
#define maxm 1000
#define maxn 32
using namespace std;
//打印表 
void display(int dp[maxm],int m)
{
	for(int i=0;i<=m;i++)
	   cout<<dp[i]<<" ";
	   cout<<endl;
}
//主函数 
int main()
{
	int m, n;
	int dp[maxm];
	memset(dp,0,sizeof(dp));
	scanf("%d", &m);
	scanf("%d", &n);
	 //填表 
	 for(int i=1;i<=n;i++)
	 {
	 	int W,V;
	 	scanf("%d",&W);
	 	scanf("%d",&V);	 	
	 	for(int j=m;j>=W;--j)//从后向前 
	 	{
		   	int choose = dp[j-W]+V;//选了,价值增加 
			if(choose>dp[j])dp[j]=choose;	  
	 	}
	 }
     display(dp,m);//调试用 
	 printf("%d",dp[m]);	 	
	return 0;
}

结果截图:

结果截图

请看完全背包:动态规划-完全背包(含全部代码)

更多数据结构与算法实现:数据结构(严蔚敏版)与算法的实现(含全部代码)

有问题请下方评论,转载请注明出处,并附有原文链接,谢谢!如有侵权,请及时联系。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lady_killer9

感谢您的打赏,我会加倍努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值