laiwenqiang的专栏

It’s fucking miracle.

排序:
默认
按更新时间
按访问量

梯度下降

我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数: θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的...

2015-10-24 14:29:54

阅读数:332

评论数:0

线性回归

机器学习有监督学习之--回归 一、引言   本材料参考Andrew Ng大神的机器学习课程 http://cs229.stanford.edu,以及斯坦福无监督学习UFLDL tutorial http://ufldl.stanford.edu/wiki/index.php/UFLDL...

2015-10-24 14:27:57

阅读数:441

评论数:0

有趣的机器学习:最简明入门指南

在听到人们谈论机器学习的时候,你是不是对它的涵义只有几个模糊的认识呢?你是不是已经厌倦了在和同事交谈时只能一直点头?让我们改变一下吧! 本指南的读者对象是所有对机器学习有求知欲但却不知道如何开头的朋友。我猜很多人已经读过了“机器学习”的维基百科词条,倍感挫折,以为没人能给出一个高层次的解释。...

2015-04-13 16:18:38

阅读数:1993

评论数:1

机器学习概述

机器学习应用较多的分类为以下三种: (1)监督学习 supervised learning,通过已有的一部分输入数据和输出数据之间的对应关系,生成一个函数,将输入映射给合适的输出。如分类。 (2)非监督学习 unsupervised learning,直接对输入数据进行建模,例如聚类 (3)...

2014-12-11 12:52:23

阅读数:529

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭