题目连接:
http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1509
题目类型:
动态规划
数据结构:
无
思路分析:
-------------------------------------------------------------------------------------
分治思路
在M的时间,让虫子从P位置到T位置
可以分解为在M-1的时间,让虫子从P到T-1和T+1位置.(如果T在边缘,则取其一)
问题可以分解到 当M=1时,从P到P+1,或者P-1位置的走法,得数为1.
利用迭代将答案相加即可.
-------------------------------------------------------------------------------------
动态规划思路
利用分治算法,假如K时刻在N位置,需要求得K-1时刻在N-1和N+1位置的情况.
难免N-1跟N+1 其中有几步是会重复,比如在T时刻 N+1,N-1 共同对应 T-1时刻的 N.
这里会耗费不少的务必要时间.
换个思路从M=0开始向上迭代.
每一步的走法情况等于前一秒旁边位置情况的和.
这里每一步要求的数据都是新的,数据来源则可以从M-1直接获得.
所以不存在重复求同一问题的情况 省去大量时间.
证明:
略
源代码:
#include <iostream>
#include <stdio.h>
using namespace std;
int main()
{
int i,j,n,p,m,t;
int ans[101][101]={0};
while(scanf("%d%d%d%d",&n,&p,&m,&t)!=EOF)
{
memset(ans,0,sizeof(ans));
ans[p][0]=1;
for(i=0;i<=m;i++)
for(j=1;j<=n;j++)
if(ans[j][i]!=0)
{
ans[j-1][i+1]+=ans[j][i];
ans[j+1][i+1]+=ans[j][i];
}
printf("%d\n",ans[t][m]);
}
return 0;
}