TOJ 2399


题目连接:

http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=2399


题目类型:

数论 - 高次同余方程


数据结构:

struct LMIC_HASHTABLE
{
	int i;
    int key[N],
    	value[N];
    
    void init()
    {
        for( i = 0; i < N; i ++ )
		{
			key[i] = -1;
			value[i] = -1;
		}
    }
    
    void insert( int k, int v )
    {
        int kk = k % N;
        
        while( key[kk] != -1 && key[kk] != k )
		{
			kk = ( kk + 1 ) % N;
		}
		
        key[kk] = k;
		value[kk] = v;
    }
    
    int find( int k )
    {
        int kk = k % N;
        
        while( key[kk] != -1 && key[kk] != k )
		{
			kk = ( kk + 1 ) % N;
		}
		
        return value[kk];
    }
} ;


思路分析:

题目要求 求出 B ^ L = N ( mod p ) 的方程解 L

利用循环验证的方法


证明:


源代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;

#define N 100000

struct hashtable
{
    int key[N];
    int value[N];
    
    void init()
    {
        for(int i=0;i<N;i++)key[i]=-1,value[i]=-1;
    }
    void insert(int k,int v)
    {
        int kk=k%N;
        while(key[kk]!=-1&&key[kk]!=k) kk=(kk+1)%N;
        key[kk]=k,value[kk]=v;
    }
    int find(int k)
    {
        int kk=k%N;
        while(key[kk]!=-1&&key[kk]!=k) kk=(kk+1)%N;
        return value[kk];
    }
} h;

int baby_giant(int x,int k,int z)
{
    x%=z,k%=z;
    int m=(int)ceil(sqrt(1.0*z)),pre=1;
    h.init();h.insert(k,0);
    for(int i=1; i<=m; i++)
    {
        pre=(1ll*pre*x)%z;
        h.insert((1ll*pre*k)%z,i);
    }
    for(int i=0,xm=pre,y=1;i*m<=z;i++)
    {
        int j=h.find(y);
        if(j>=0&&i*m-j>=0) return i*m-j;
        y=(1ll*y*xm)%z;
    }
    return -1;
}

int main()
{
    int b,n,p;

    while( scanf( "%d%d%d", &p, &b, &n ) != EOF )
    {
        int ans = baby_giant(b,n,p);
        
        if( ans >= 0 )
		{
			cout<<ans<<endl;
		}
        else
		{
			puts( "no solution" );
		}
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值