逻辑回归用于分类,其本质是线性回归和一个非线性激活函数(sigmoid函数)。
$$ h(x)=w_1x_1+w_2x_2+…+w_nx_n+b$$
$$ f(x)=\frac{1}{1+e^{-h(x)}} $$
sigmoid函数具有连续可导的性质,并且可以将$h(x)$函数的值域压缩到[0,1]区间。x轴在0点对应y的值为0.5,这样可以将值小于0.5的样本分为负样本,值大于0.5的样本分为正样本。假设进行二分类,分类概率如下所示:
$$p(y=1|x)=p$$
$$p(y=0|x)=1-p$$
$$\log\frac{p(y=1|x)}{p(y=0|x)}=\log\frac{p}{1-p}=w_1x_1+w_2x_2+…+w_nx_n+b$$
$$ p=\frac{1}{1+e^{-h(x)}} $$
根据极大似然的思想,如果分类器效果很好,那么下面公式的值就相对较大。
$$L(w)=\prod_{i=1}^n\left(p^{y_i}(1-p)^{1-y_i}\right)$$
为了简化计算可以使用对数函数对其进行简化,得到公式如下所示:
$$l(w)=\ln{L(w)}=\sum_{i=1}^n\left(y_ip+(1-y_i)(1-p)\right)$$
那么逻辑回归的损失函数可以表示为:
$$loss(w)=min[-l(w)]$$
本文深入浅出地介绍了逻辑回归的基本概念及其数学原理。通过sigmoid函数将线性模型转换为概率预测模型,适用于二分类问题。文章详细推导了从似然函数到损失函数的过程,并解释了如何利用梯度下降等优化算法最小化损失函数。
213

被折叠的 条评论
为什么被折叠?



