逻辑回归

本文深入浅出地介绍了逻辑回归的基本概念及其数学原理。通过sigmoid函数将线性模型转换为概率预测模型,适用于二分类问题。文章详细推导了从似然函数到损失函数的过程,并解释了如何利用梯度下降等优化算法最小化损失函数。

逻辑回归用于分类,其本质是线性回归和一个非线性激活函数(sigmoid函数)。

$$ h(x)=w_1x_1+w_2x_2+…+w_nx_n+b$$

$$ f(x)=\frac{1}{1+e^{-h(x)}}  $$

sigmoid函数具有连续可导的性质,并且可以将$h(x)$函数的值域压缩到[0,1]区间。x轴在0点对应y的值为0.5,这样可以将值小于0.5的样本分为负样本,值大于0.5的样本分为正样本。假设进行二分类,分类概率如下所示:

$$p(y=1|x)=p$$

$$p(y=0|x)=1-p$$

$$\log\frac{p(y=1|x)}{p(y=0|x)}=\log\frac{p}{1-p}=w_1x_1+w_2x_2+…+w_nx_n+b$$

$$ p=\frac{1}{1+e^{-h(x)}}  $$

根据极大似然的思想,如果分类器效果很好,那么下面公式的值就相对较大。

$$L(w)=\prod_{i=1}^n\left(p^{y_i}(1-p)^{1-y_i}\right)$$

为了简化计算可以使用对数函数对其进行简化,得到公式如下所示:

$$l(w)=\ln{L(w)}=\sum_{i=1}^n\left(y_ip+(1-y_i)(1-p)\right)$$

那么逻辑回归的损失函数可以表示为:

$$loss(w)=min[-l(w)]$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值