Zhang's Wikipedia

玩就玩大的

向量的叉乘

1. 注意叉乘的顺序与方向

2018-02-11 21:48:09

阅读数:242

评论数:0

gemm() 与 gesvd() 到矩阵求逆(inverse)(根据 SVD 分解和矩阵乘法求矩阵的逆)

可逆方阵 AA 的逆记为,A−1A^{-1},需满足 AA−1=IAA^{-1}=I。在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()和gesvd()操作得到。实值可逆方阵 AA,其 SVD 分解如

2017-07-08 10:35:15

阅读数:1176

评论数:0

酉矩阵(unitary matrix)

复方阵 UU 称为酉矩阵,如果满足:U∗U=UU∗=I U^*U=UU^*=I 换句话说,矩阵 UU 的共轭转置 U∗U^* 就是 UU 的逆矩阵。U∗=U−1 U^*=U^{-1} 1. unitary matrix 保持内积不变⟨Ux,Uy⟩=⟨x,y⟩

2017-05-15 23:41:19

阅读数:2548

评论数:0

Toeplitz matrix 与 Circulant matrix

之所以专门定义两个新的概念,在于它们特殊的形式,带来的特别的形式。1. Toeplitz matrix 对角为常数; n×nn\times n 的矩阵 AA 是 Toepliz 矩阵当且仅当,对于 Ai,jA_{i,j} 有:Ai,j=Ai+1,j+1=ai−j A_{i,j}=A_{i+1,j+...

2017-05-15 19:12:08

阅读数:2528

评论数:0

常见矩阵求导

矩阵微分(matrix derivatives)1. 字典学习中的最小二乘法 使用迭代求解的思路,优化上述问题,固定 WW,上述问题就转换为单目标

2017-03-29 17:14:53

阅读数:530

评论数:0

稀疏编码(sparse code)与字典学习(dictionary learning)

Dictionary Learning Tools for Matlab.1. 简介字典 D∈RN×KD\in \mathbb R^{N\times K}(其中 K>NK>N),共有 kk 个原子,x∈RN×1x\in \mathbb R^{N\times 1} 在字典 DD 下的表示...

2017-03-29 15:19:15

阅读数:7566

评论数:2

四个基本子空间

零空间;

2017-03-29 10:32:54

阅读数:765

评论数:0

矩阵分解(matrix factorization)

1. 基本概念 针对高维空间中的数据集,矩阵分解通过寻找到一组基及每一个数据点在该基向量下的表示,可对原始高维空间中的数据集进行压缩表示。

2017-03-28 22:59:09

阅读数:1322

评论数:0

从张量积(tensor product)到多重线性代数(multilinear algebra)

从张量积(tensor product)到多重线性代数

2017-03-23 10:50:53

阅读数:2949

评论数:0

行列式(determinant)的物理意义及性质

1. 物理(几何)意义detA=output areainput area \det A=\frac{\text{output area}}{\text{input area}} 首选,矩阵代表的是线性变换(linear transformation)。上式说明一个矩阵的行列式(detA\det ...

2017-03-23 10:08:07

阅读数:3252

评论数:0

矩阵微分(matrix derivatives)

关于矩阵求导,得到的导数则是矩阵形式;关于矢量求导,得到的导数则是矢量形式;关于标量求导,得到的仍是标量形式。 共存在 6 种形式的矩阵导数: 1. 关于向量的导数 标量对向量求导

2017-02-17 09:44:42

阅读数:4763

评论数:0

对偶空间(dual linear space)

对偶空间的定义 对偶空间的向量与对偶空间的基;

2017-01-03 22:07:10

阅读数:5945

评论数:0

基变换与坐标变换

1. 过渡矩阵与基变换 2. 坐标变换

2017-01-03 17:07:12

阅读数:5290

评论数:0

矩阵分析相关证明(一) —— 正交与投影

αu

2016-12-09 11:40:59

阅读数:896

评论数:0

方阵的迹(trace)及其微分(导数)

1. 基本性质 Tr(A)=Tr(AT)\text{Tr}(\mathrm A)=\text{Tr}(\mathrm A^T) Tr(ABC)=Tr(BCA)=Tr(CAB)\text{Tr}(\mathrm {ABC})=\text{Tr}(\mathrm {BCA})=\text{Tr}(\m...

2016-11-24 21:48:17

阅读数:9432

评论数:3

Scatter matrix(散布矩阵)

nn 个 mm 维的样本,Xm×n=[x1,x2,…,xn]X_{m\times n}=\left[\mathrm x_1,\mathrm x_2,\ldots,\mathrm x_n\right],样本均值定义为:x¯=1n∑i=1nxi \bar {\mathrm x}=\frac1n\sum...

2016-11-24 19:35:33

阅读数:2970

评论数:0

explanatory variable(independent vs dependent)、design matrix

design matrix(设计矩阵) 是统计学上的概念,一般标记为 XX,是由一组对象的解释变量(explanatory variables)构成的矩阵。1. explanatory variables 刻画的是属性列(feature column),也即一个样本、一个对象都可视为,或者抽象...

2016-11-24 11:52:45

阅读数:1390

评论数:0

matlab 求解 Ax=B 时所用算法

x = A\B; x = mldivide(A, B);matlab 在这里的求解与严格的数学意义是不同的, 如果 A 接近奇异,matlab 仍会给出合理的结果,但也会提示警告信息; 如果 A 为方阵,如果解存在的话,x = A\B 的解就是 Ax=B(代入就会成立) 如果 A 不为方阵,返回的...

2016-11-18 17:21:26

阅读数:3100

评论数:0

希尔伯特矩阵(Hilbert matrix)

1. 定义由 Hilbert 1894 年引入的一个方阵,矩阵在各个位置上的值为:Hij=1i+j−1 H_{ij}=\frac1{i+j-1} 显然 Hij=HjiH_{ij}=H_{ji},这是一个对称矩阵,由单位分数(unit fraction,分子是 1,分母是正整数)。

2016-11-12 12:24:17

阅读数:5877

评论数:0

矩阵分块与矩阵乘法的理解

1. 矩阵乘法 单位矩阵是正定矩阵,zTIz=zTz=∥z∥2 z^{\mathrm{T}}I z =z^Tz=\|z\|^2

2016-11-09 12:49:30

阅读数:2538

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭