Zhang's Wikipedia

玩就玩大的

【数论】—— 多边形数的计算(三角形数,五边形数)

1. 和式 1+3+5+⋯+(2n−1)=n21+3+5+⋯+(2n−1)=n21+3+5+\cdots+(2n-1) = n^2 2. 五边形数 五边形数的几何形式如下: 如何计算 P100P100P_{100}? 将各个图形中的点拆分成如下左右两个部分: ...

2018-08-08 23:21:05

阅读数:342

评论数:0

【数论】—— 整数质因子分解

Efficient program to print all prime factors of a given number import math def number_factorize(num): prime_factors = [] # 如果整数为偶数,其素因子为 2...

2018-08-08 22:55:25

阅读数:279

评论数:1

(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)

(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形。 0. 多项式长除法(Polynomial long division)Polynomial long division - Wikipedia 1. 因式分解定理Factor th...

2017-08-13 10:20:31

阅读数:5218

评论数:0

亲和数(220/284)

亲和数(amicable number) 由费马发现,亲和数指的是一对数,其中每一个数是另一个数的因数之和。毕达哥拉斯学派给出了一非凡的发现,220 和 284 是亲和数。 220 的因数为:1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,和为 284; 284 的...

2017-07-04 21:16:09

阅读数:756

评论数:0

友好数

220 与 284220:1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220 284:1, 2, 4, 71, 142, 284而把这些除了数本身的因子加起来,220: 1+2+4+5+10+11+20+22+44+55+110 = 284 220=1+2...

2016-10-07 00:00:24

阅读数:443

评论数:0

素数分布定理

对正整数 xx,记 π(x)\pi(x) 为不大于 xx 的素数个数。 第 nn 个素数 p(n)p(n) 的渐进估计为,p(n)∼nlnnp(n)\sim n\ln n,它也给出从整数中抽到素数的概率。从不大于 n 的自然数随机选一个,它是素数的概率大约是 1/lnn1/\ln n(也即 nn ...

2016-10-06 18:34:47

阅读数:1802

评论数:0

十进制的研究(二)

十进制研究 1. ab 与 ba、abc 与 cba

2016-09-23 00:07:45

阅读数:320

评论数:0

卡特兰(Catalan)数列

卡特兰数又称卡塔兰数,英文名 Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429

2016-09-19 23:42:56

阅读数:504

评论数:0

约数的计算

1. 全部正约数、负约数;

2016-09-12 22:45:11

阅读数:385

评论数:0

被 6 整除

被 6 整除,也即具有 2 和 3 的因子, 具有 2 的因子说明为偶数 具有 3 的因子说明各位之和能被 3 整除 10≡1mod310n≡1mod310n−1|3 \begin{split} & 10\equiv1\mod 3\\& 10^n\equiv1\mod 3\\&...

2016-09-10 19:09:50

阅读数:406

评论数:0

实数的认识

1. 常见定义规范小数:若一个有尽小数 a0.a1a2…apa_0.a_1a_2…a_p 在第 k 位之后不全为 0 或 9,则称其为规范小数。

2016-09-02 16:09:06

阅读数:412

评论数:0

被 5 整除的数

被 7 整除的数 被 9 整除1. 被 5 整除的数的特点 个位数字是 0/5 换句话说,个位数字是 0/5 的数,都存在 5 的因子;

2016-08-21 18:00:12

阅读数:555

评论数:0

无理数的认识

无理数也是无穷无尽的,它们比起有理数来得多得多。 1. 从 2√\sqrt 2 开始我们从 2√\sqrt 2 开始,就可以构造无穷多个无理数: 1+2√1+\sqrt 2,2+2√2+\sqrt 2,3+3√3+\sqrt 3,…\ldots,也都是无理数; 22√2\sqrt 2,32√3\s...

2016-08-18 12:23:29

阅读数:811

评论数:0

求通项

1. 1, 0, 1, 0, 1, 0, 1…简单地,1, -1, 1, -1, 1, -1…,其通项为,(−1)n+1(-1)^{n+1}an=1+(−1)n+12 a_n=\frac{1+(-1)^{n+1}}2

2016-08-15 10:15:20

阅读数:345

评论数:0

因式分解的研究

1. an−1a^n-1an−1=(a−1)[1+a+a2+⋯+an−1] a^n-1=\left(a-1\right)\left[1+a+a^2+\cdots+a^{n-1}\right] 1+a+a2+⋯+an−1=an−1a−11+a+a^2+\cdots+a^{n-1}=\frac{a^n...

2016-07-15 17:41:15

阅读数:624

评论数:0

梅森素数与孪生素数

1. 定义2n−12^n-1 这种形式的素数就是梅森素数,2n−1=11…1n−1 2^n-1=\underbrace{11\ldots 1}_{n-1} 2. 举例 3=22−13=2^2-1 7=23−17=2^3-1 31=25−131=2^5-1 127=27−1127=2...

2016-07-15 17:15:59

阅读数:1212

评论数:0

完全数

完全数是等于其真因子之和的数;(正整数 NN 的真因子是除了 NN 以外的全部正整数因子,注意:1 是 NN 的真因子) 1. 欧几里得和欧拉的贡献欧几里得:如果 2n−12^n-1 是一个素数,则 2n−1(2n−1)2^{n-1}(2^n-1) 是一个完全数; 欧拉证明:每一个偶完全数必定是...

2016-07-15 00:51:46

阅读数:600

评论数:0

二进制与以 2 为底的指数

以 2 为底的指数天然地与二进制相关。 1+2+⋯+2n=2n+1−1 1+2+\cdots+2^n=2^{n+1}-1 或者说:2n+1=(1+2+⋯+2n)+1 2^{n+1}=\left(1+2+\cdots+2^n\right)+1 与二进制的关系是:1+2+⋯+2n−1=11…1...

2016-07-14 12:36:39

阅读数:1019

评论数:0

整数的因式分解

203=7×29203=7\times 29

2016-07-13 20:20:16

阅读数:1625

评论数:0

傅利曼数

傅利曼数:能够仅用其所包含的数字通过四则运算和乘方五种运算得出自身结果的整数。 25⇒5225 ⇒ 5^2 121⇒112121 ⇒ 11^2 125⇒51+2125 ⇒ 5^{1+2} 126=21×6126=21\times 6 127=27−1127=2^{7}-1 128=28−1128=...

2016-07-13 19:44:15

阅读数:338

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭